C1 Graphs of Functions

1 Describe how the graph of $y=\mathrm{f}(x)$ is transformed to give the graph of
a $y=\mathrm{f}(x-1)$
b $y=\mathrm{f}(x)-3$
c $y=2 \mathrm{f}(x)$
d $y=\mathrm{f}(4 x)$
e $y=-\mathrm{f}(x)$
f $y=\frac{1}{5} \mathrm{f}(x)$
g $y=\mathrm{f}(-x)$
h $y=\mathrm{f}\left(\frac{2}{3} x\right)$

2

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which crosses the coordinate axes at the points $(0,3)$ and $(4,0)$.
Showing the coordinates of any points of intersection with the axes, sketch on separate diagrams the graphs of
a $y=3 \mathrm{f}(x)$
b $y=\mathrm{f}(x+4)$
c $y=-\mathrm{f}(x)$
d $y=\mathrm{f}\left(\frac{1}{2} x\right)$

3 Find and simplify an equation of the graph obtained when
a the graph of $y=2 x+5$ is translated by 1 unit in the positive y-direction,
b the graph of $y=1-4 x$ is stretched by a factor of 3 in the y-direction, about the x-axis,
c the graph of $y=3 x+1$ is translated by 4 units in the negative x-direction,
d the graph of $y=4 x-7$ is reflected in the x-axis.
4

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which has a turning point at $(2,4)$ and crosses the y-axis at the point $(0,6)$.
Showing the coordinates of the turning point and of any points of intersection with the axes, sketch on separate diagrams the graphs of
a $y=\mathrm{f}(x)-3$
b $y=\mathrm{f}(x+2)$
c $y=\mathrm{f}(2 x)$
d $y=\frac{1}{2} \mathrm{f}(x)$

5 Describe a single transformation that would map the graph of $y=x^{3}$ onto the graph of
a $y=4 x^{3}$
b $y=(x-2)^{3}$
c $y=-x^{3}$
d $y=x^{3}+5$

6 Describe a single transformation that would map the graph of $y=x^{2}+2$ onto the graph of
a $y=2 x^{2}+4$
b $y=x^{2}-5$
c $y=\frac{1}{9} x^{2}+2$
d $y=x^{2}+4 x+6$

7 Find and simplify an equation of the graph obtained when
a the graph of $y=x^{2}+2 x$ is translated by 1 unit in the positive x-direction,
b the graph of $y=x^{2}-4 x+5$ is stretched by a factor of $\frac{1}{3}$ in the x-direction, about the y-axis.
c the graph of $y=x^{2}+x-6$ is reflected in the y-axis,
d the graph of $y=2 x^{2}-3 x$ is stretched by a factor of 2 in the x-direction, about the y-axis.
8

$$
\mathrm{f}(x) \equiv x^{2}-4 x
$$

a Find the coordinates of the turning point of the graph $y=\mathrm{f}(x)$.
b Sketch each pair of graphs on the same set of axes showing the coordinates of the turning point of each graph.
i $y=\mathrm{f}(x)$ and $y=3+\mathrm{f}(x)$
ii $y=\mathrm{f}(x)$ and $y=\mathrm{f}(x-2)$
iii $y=\mathrm{f}(x)$ and $y=\mathrm{f}(2 x)$

9 Sketch each pair of graphs on the same set of axes.
a $y=x^{2}$ and $y=(x+3)^{2}$
b $y=x^{3} \quad$ and $\quad y=x^{3}+4$
c $y=\frac{1}{x} \quad$ and $\quad y=\frac{1}{x-2}$
d $y=\sqrt{x}$ and $y=\sqrt{2 x}$

10 a Describe two different transformations, each of which would map the graph of $y=\frac{1}{x}$ onto the graph of $y=\frac{1}{3 x}$.
b Describe two different transformations, each of which would map the graph of $y=x^{2}$ onto the graph of $y=4 x^{2}$.

11

$$
\mathrm{f}(x) \equiv(x+4)(x+2)(x-1)
$$

Showing the coordinates of any points of intersection with the axes, sketch on separate diagrams the graphs of
a $y=\mathrm{f}(x)$
b $y=\mathrm{f}(x-4)$
c $y=\mathrm{f}(-x)$
d $y=\mathrm{f}(2 x)$

12 The curve $y=\mathrm{f}(x)$ is a parabola and the coordinates of its turning point are (a, b). Write down, in terms of a and b, the coordinates of the turning point of the graph
a $y=3 \mathrm{f}(x)$
b $y=4+\mathrm{f}(x)$
c $y=\mathrm{f}(x+1)$
d $y=\mathrm{f}\left(\frac{1}{3} x\right)$

13

The diagram shows the curve with equation $y=\mathrm{f}(2 x)$ which crosses the coordinate axes at the points $(-2,0)$ and $(0,1)$.
Showing the coordinates of any points of intersection with the coordinate axes, sketch on separate diagrams the curves
a $y=3 \mathrm{f}(2 x)$
b $y=\mathrm{f}(x)$

