
ALGEBRA

- 1 Solve each of the following inequalities.
 - $\mathbf{a} \quad \frac{1}{2}y + 3 > 2y 1$
 - **b** $x^2 8x + 12 \ge 0$
- 2 Find the set of integers, *n*, for which

$$2n^2-5n<12.$$

3

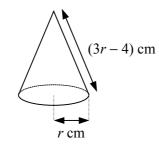
C1

The diagram shows a rectangular birthday card which is x cm wide and (x + 8) cm tall. Given that the height of the card is to be at least 50% more than its width,

a show that $x \le 16$.

Given also that the area of the front of the card is to be at least 180 cm^2 ,

- **b** find the set of possible values of *x*.
- 4 Find the set of values of *x* for which


$$(3x-1)^2 < 5x-1.$$

- 5 Given that x y = 8, and that $xy \le 240$, find the maximum value of (x + y).
- **6** Solve the inequality

$$(3t+1)(t-4) \ge 2t(t-7).$$

- 7 Given that the equation 2x(x + 1) = kx 8 has real and distinct roots,
 - **a** show that $k^2 4k 60 > 0$,
 - **b** find the set of possible values of *k*.

8

A party hat is designed in the shape of a right circular cone of base radius r cm and slant height (3r - 4) cm.

Given that the height of the cone must not be more than 24 cm, find the maximum value of r.