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Given y=x*+4x+ 1, find the value of dy when x =3

X

(Total 4 marks)
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2. Express \1/_5 — 27 in the form kV3, where k is an integer.
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3. Find
J. (3)(2 - —%J dx
X
giving each term in its simplest form.
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The line L, has equation 4x +2y—3=0

(a) Find the gradient of L .
(2)

The line L, is perpendicular to L, and passes through the point (2, 5).

(b) Find the equation of L, in the form y = mx + ¢, where m and c are constants.

3
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5.

Solve
(a) =8

(1)
(b) 2*x 4*1=8

)

@) U~
= TR
b) 2 x D7 T =38
%31—;:47_ — g )
y S
XA =3
o S
N < t/’?
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6. Asequence x, X, x,... is defined by

x, =1
. — 2 '
JLrr-Ll o (xn) - kxn’ n ; 1

where k is a constant, k= 0

(a) Find an expression for x, in terms of £.

1)
(b) Show that x, =1 —3k+ 2k
(2
Given also that x, = 1,
(c) calculate the value of &.
3)
(d) Hence find the value of %xn
3
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QQuestion 6 continued

SO pairs g vuMoors wadl add o 0.5

SHv(.DH = 935
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Each year, Abbie pays into a savings scheme. In the first year she pays in £500. Her

payments then increase by £200 each year so that she pays £700 in the second year, £900

in the third year and so on.

(a) Find out how much Abbie pays into the savings scheme in the tenth year.

Abbie pays into the scheme for n years until she has paid in a total of £67200.

(b) Show that n? +4n—24 x 28 =0

(c) Hence find the number of years that Abbie pays into the savings scheme.

@)

(%)

2)

oy A= 200 A=800

Uo= A+ n-]d
oz SOO + 9(200)
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8. A rectangular room has a width of x m.
The length of the room is 4 m longer than its width.
Given that the perimeter of the room is greater than 19.2 m

3

(a) show thatx > 2.8

(3)
Given also that the area of the room is less than 21 m?,
(b) (i) write down an inequality, in terms of x, for the area of the room.
(i1) Solve this inequality.
“
(c) Hence find the range of possible values for x.
(1)
XY
.
y %
X+
ey Ux + & > 19.7
/
Cx > IL.C
X N5 2.%

—

b/) X ( >+ u,) < 2|
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Question 8 continued
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Figure 1
Figure 1 shows a sketch of the curve C with equation y = f(x).

The curve C passes through the point (—1, 0) and touches the x-axis at the point (2, 0).

The curve C has a maximum at the point (0, 4).

(a) The equation of the curve C can be written in the form

y=%+ ax® +bx +¢

where a, b and ¢ are integers.

Calculate the values of a, b and c.
(%)
(b) Sketch the curve with equation y = f(%x) in the space provided on page 24

Show clearly the coordinates of all the points where the curve crosses or meets the
coordinate axes.
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ot 4 at = oy G wx v g
xX° - 3xC * Yy

@ |

!

i

{1

rr it

0=-3 b0 o4

-
Leave
blank

22

IBRIIRR| 11 BIGI IR 2112 (1229 |I1811 (]| A%13 /(0 (1228 (|18 /18] |§E]



Question 9 continued
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10. A curve has equation y = f(x). The point P with coordinates (9, 0) lies on the curve.

Given that

Fx) = xj . %=1

X

(a) find f(x).
(6)

(b) Find the x-coordinates of the two points on y = f(x) where the gradient of the curve is
equal to 10
“)
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11.

X+ 42—

2x=

-

YVa y=x+2

v

Figure 2.

P

Figure 2

The line y = x + 2 meets the curve x? + 4y% — 2x = 35 at the points 4 and B as shown in

(a) Find the coordinates of 4 and the coordinates of B.

(6)

(b) Find the distance 4B in the form V2 where r is a rational number.

(&)

&/ 2 Auy -2y = 3S

[

) r(l*\’lﬁ

s @(oay =2 = 3
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Question 11 continued
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