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Answer ALL questions. Write your answers in the spaces provided.
f(x) =3x*+ 2ax* — 4x + 5a

Given that (x + 3) is a factor of f(x), find the value of the constant a.

3)

fl-3)=2

&

3(-3) *da(-3) ~4(-3) * 5a =0

— R 1 * \RQa ~ 2 = = 0

22~ L4 = O

2 3o = LA

o = 3




Figure 1

Figure 1 shows a plot of part of the curve with equation y = cosx where x is measured in radians.
Diagram 1, on the opposite page, is a copy of Figure 1.

(a) Use Diagram 1 to show why the equation

1
Cosx—-2x——=0

has only one real root, giving a reason for your answer.

)

Given that the root of the equation is a, and that ¢ is small,

(b) use the small angle approximation for cosx to estimate the value of a to 3 decimal places.

3)
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o/ Cosx = 2ox + L
7 2
c=
[
") = 2
-3 1L g
Y |~ T =
U o
‘77)50;'{’ /"S’ Q41 /M aN-€ (ﬂ?Z‘PfJ--e(;r/:?‘aV‘) - o€
reol  rsat.

A 0000 O 0



Question 2 continued
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Diagram 1
L/ -
coS £ = / - =
A
j =2 =24 =t =0
> P
D - % —tyoe — | = 0
o = 96?' + o — |
x2=0236 X2 =436 .
X
>~ = 0.23 6 , (,Ql\‘ see dioecom

(Total for Question 2 is 5 marks)
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3 _ 5x? +10x
) (x +1)?

x # -1

(a) Show that Y = where 4 and » are constants to be found.
dx  (x+1)"

C))
(b) Hence deduce the range of values for x for which L4 <0
L Q)
2 2
a/ w= Lx” +/l0x = (2 +/)
du_=/0x 1,0 Av = 2(x +1)
i i ~ V4
o x o x
Ay = vde — gdy
e fo 4 ax
A x L :
v 2(x +1) 184
2 ‘ . ) # .;,
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4 : . :
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4. (a) Find the first three terms, in ascending powers of x, of the binomial expansion of

1
4-x
giving each coefficient in its simplest form.

“4)

The expansion can be used to find an approximation to /2
Possible values of x that could be substituted into this expansion are:

e x=-14 because

s x =2 because

1 1 2
° x=—5 because = — =

(b) Without evaluating your expansion,

(i) state, giving a reason, which of the three values of x should not be used
0))

(ii) state, giving a reason, which of the three values of x would lead to the most
accurate approximation to /2

(D
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Question 4 continued
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(Total for Question 4 is 6 marks)
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f(x)=2x>+4x+9 xelR

(a) Write f(x) in the form a(x + b)* + ¢, where a, b and c are integers to be found.

3
(b) Sketch the curve with equation y = f (x) showing any points of intersection with the
coordinate axes and the coordinates of any turning point.
3
(¢) (i) Describe fully the transformation that maps the curve with equation y = £ () onto
the curve with equation y = g(x) where
gX)=2(x~2P+4x -3 xeR
(1)) Find the range of the function
2
h(x):22+zi +9 xeR
x X 4)
o/ o .
2 / 2 A+ 2o / + 7
= 1
= 2 .
2/ er)" -1 ] * 3
= 4
2
2(x +1)" —~ 2 + 7
- Z
2 [ x +/) + 7
b/ .\
/ v " —
M PO:’/‘E (\ , 7/)
Crosses J  when =0 y = 9
v,
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Question 5 continued

R\/

’

i(/ Trans [at10n rx‘gfh/‘ 2 where

Plx-2) = 2({x-2)" + ¢(x=2%) *+ 9

= 2( »2}1 ~+ g — 5 + 9

= 2(:1&«2)7' ¢ +/

Llx-2) —¢ =2z -2)" + 4x =3

[4

9(z) = L/x-2) —y

/

2 1
2 right, down Y (—/(f/
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Question 5 continued

| [
o hlx) = 57, 5

7 =Ty

when x= -/ A[’/,) = ’_z_;_(__ = 5
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6. (a) Solve, for —180° < @ < 180°, the equation

5sin26 = 9tan@

giving your answers, where necessary, to one decimal place.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(6)

(b) Deduce the smallest positive solution to the equation

5sin(2x — 50°) = 9tan (x — 25°)
(2

a/ 5 Sin 26 = G Faa b

5\/2» S_A é Coy é/) = C7 Z;O_n &

] O S,A 6 cos & = 67 S, &
Ceoi &

(O s/n & Cﬁ;qéz — c7 S, N 4

lo $n 6 [/ =50¢) = 9 < ab
\ 7

/O 5/a b — 10 5/a 8 = 7 sia 6

O = o sv‘nsé — s 6

O = %"oﬁ\/‘ (055 p ~’/)

/
v 9:0 rzﬂ_, —4——/
SiA S4. I‘L/
sin 6 = | 7k sia 0 =~ 45

B =0,-180,i156" D=1 Y, L)L b=—is g, -il)(
/ e P el - —

T

— e A AT T T A T R e &




4

7. In a simple model, the value, £V, of a car depends on its age, £, in years.
The following information is available for car 4

e its value when new is £20000
e its value after one year is £16000

(a) Use an exponential model to form, for car 4, a possible equation linking V" with ¢.

“4)

The value of car 4 is monitored over a 10-year period.
Its value after 10 years is £2 000

(b) Evaluate the reliability of your model in light of this information.

@
The following information is available for car B

e it has the same value, when new, as car 4
e its value depreciates more slowly than that of car 4

(c) Explain how you would adapt the equation found in (a) so that it could be used to
model the value of car B.

)

a// V=,4Ae"°

A = 20000

V= 20000 ¢°°

when t=/ V= /gooco
/60006 = 20000 @
== ek
[
it




Question 7 continued
b/ ¢= /0
TET A
V= 20000 € v
=42 147
Y2147 s Cloe 4o 12ooo  , 1ne meclel
5o reliable,
C‘// The k value cuowld C’/ha,neal/p
€6 ccould he a——sataller—rritsbls ( clorer *o
Zera/)
y
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8.
y A
>
x
Figure 2
Figure 2 shows a sketch of part of the curve with equation y =x(x + 2)(x — 4).
Ao X=-v X =
The region R, shown shaded in Figure 2 is bounded by the curve and the negative x-axis.
(a) Show that the exact area of R, is 20
3

C))
The region R, also shown shaded in Figure 2 is bounded by the curve, the positive x-axis
and the line with equation x = b, where b is a positive constant and 0 < b < 4
Given that the area of R, is equal to the area of R,
(b) verify that b satisfies the equation

(b +2)* (3"~ 20b +20) = 0

O]
The roots of the equation 35” — 205 + 20 = 0 are 1.225 and 5.442 to 3 decimal places.
The value of b is therefore 1.225 to 3 decimal places.
(¢) Explain, with the aid of a diagram, the significance of the root 5.442

(2

/ y = x( x* ),
a, Yz x( X7 —¢x 42y g
= o x* - 2x — 5 )
3 z
= X —Z2x — 8§«
b

- " R0 0 R 0
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%% ¢ Question 8 continued
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Question 8 continued
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(Total for Question 8 is 10 marks)
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9. Given thata > b > 0 and that @ and b satisfy the equation

loga —logb = log(a - b)

(a) show that

b2
a =
b-1
3)
(b) Write down the full restriction on the value of b, explaining the reason for this restriction.
(2)
, oy
a/ (.Oq/’,'“) = log (“’L’)
/ J U= J
4 = a-}
b
2
a = ab - |
b <z ab — a
R \
6" = a ( b— 1)
é - Z. &
=y
——

L £ a; &= )5S not defaed ien L=

L=
as a >L> o LE .> O
L~/
L /s a/wcu?fs +ve
é-—-/ >0
b >

— - -~ ~ - -~ ~ -~ ~ ~ 7 .
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10. (i) Prove that for all n € N, n? + 2 is not divisible by 4 ~
C))

(ii) “Given x € R, the value of |3x - 28| is greater than or equal to the value of (x—9).”
State, giving a reason, if the above statement is always true, sometimes true or never true.

)

/'-0)(/‘ when 7L /s Q(/e/)?

(Qm); t 2 = 4L/M?" r )

Tawo Mor€  1han _a  nulbple of ¥ 5 net—

Arvisible Ly U
J [/

when i3 edd

(dm +7)> + 2

(2m */)[ZM +1) + 1

4/447” +2m +2m 1 7+ &

ym’® At ym 3

{fl-\f/wq"fﬂﬂ/) + 3

Tlhrzs More Thag o  prru /Af/,é af 4 )

4

I’l.of/" d/w“f,é'?fe» Sy U
/

Le n EN 022 i not oliyisidle Ly ¥

)
NS/

u(/ True when x=9

[32-28) =

[3(9) 28] = | 9 -9 =0

i /

Mol  frue whea >=9.73

/':?{7.3)_29’/:0./ 7.3-9 = 0.3

SO/WK €/ me) '/”rue

a R 0010 A
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11. A competitor is running a 20 kilometre race.

She runs each of the first 4 kilometres at a steady pace of 6 minutes per kilometre.
After the first 4 kilometres, she begins to slow down.

In order to estimate her finishing time, the time that she will take to complete each subsequent

kilometre is modelled to be 5% greater than the time that she took to complete the previous
kilometre.

Using the model,

(a) show that her time to run the first 6 kilometres is estimated to be 36 minutes 55 seconds,

2)

(b) show that her estimated time, in minutes, to run the »th kilometre, for 5 < » < 20, is

6 x 1.05°*
1)

(c) estimate the total time, in minutes and seconds, that she will take to complete the race.

“)

af Frrt G km  ja Yxb6 = 2¢ miaute s

fem & R 6 x l.of§ < (.3

= b mins 18 seconds
Ko 6 fA__ 6. %xloS = 6. 418

= 4 minS 37 recoads

2.4 MIAS + Cins 18 + Liing 3775 = ¥eains

59 s
b ] km © 61/ 05 | = §-¢
Y Ex 1.08 2 2= 6 —y4
Km r = 6 x /~05" F
c_{/ ‘S'I’Z‘_:‘ S/‘; = ﬂ‘//,ﬂ ‘-//
=
S = 63 (105"-/)
.08 -/
= 149 0% = 149 minys 3 secondd

30

— - - - - -~ a - -~ ~ 7l .




Question 11 continued

Firsk WYhky 4 Lask 1€ Km
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12.

f(x) =10e%%ginx, x>0

(a) Show that the x coordinates of the turning points of the curve with equation y = f(x)
satisfy the equation tanx = 4

4
b% A
O \/ ;
Figure 3
Figuret3 shows a sketch of part of the curve with equation y = f(x).
(b) Sketch the graph of H against # where
H(t) = |10e°* sinz|  ¢>0
showing the long-term behaviour of this curve.
)]

The function H() is used to model the height, in metres, of a ball above the ground
t seconds after it has been kicked.

Using this model, find

(c) the maximum height of the ball above the ground between the first and second bounce.

&)

(d) Explain why this model should not be used to predict the time of each bounce.
(D

a/ +um{n\cj coi A wMsre }'I(x) =0

%_\ a - /06 LTS T V - f/(/[ .Zﬂ

O S W %
A4 = 9 5, Cos

dv_=
7z L




Question 12 continued

) o TSR PR
vll/l) = Joe”° oy x — 2.5¢ S A X
10€ % "7 (o5 - 2.5 ° T T =0
R Y- ‘
e

( (O Cosx — 2.5 s,n 3«:) = 0

AU Soc.
_/0 Cos x — 2.5 §/n X =0
‘/D cos = 2-S5ax
Y Cos e = Sin X
& = bcnrnox

e

35
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Question 12 continued

H

c/ Max _when  tont = ¢
L= zfcbn_l(lf,)
= /.33 #.47
_——
]pC-i’k/@&//w Fﬁrﬂ ¥ stcond bosmce
/,/\/’4,1(/»,7) - / Jo ¢ SIS UG T S (,‘_f’(/‘_])/

]

3.18 m (\%L)
d/ In_dhe

rModel The Hme berveen pach
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hm//afnf o oS g_;g_ h e }\31 hi Jdec eajes Ao
bme _w'll olecceaie
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13. The curve C with equation

y = p=3x xeRx#-3,x#2

C 2x—q)(x +3)

with equations x = 2 and x = -3
(a) () Explain why you can deduce that ¢ = 4

(if) Show that p = 15

Y A

—>
X

Figure 4

Figure 4 shows a sketch of part of the curve C. The region R, shown shaded in Figure 4,
is bounded by the curve C, the x-axis and the line with equation x = 3

(b) Show that the exact value of the area of R is aln2 + bIn3, where a and b are rational
constants to be found.

)
2

. 1 .
where p and g are constants, passes through the point (3, 5) and has two vertical asymptotes

€))

}/ P &
A )/ e assd;/upifbl—-e will be e e 2x'~;7

wilhea o0z 2(2) —92 =0
4 -9 =0
[ 4
q4.. = %
,.—k,q’!;—__
62“/ p——?/.?)
! ./l- :-f—'rlf 1
2 7/?)—/1‘\/‘? +7\
e v "j\-) -]
- 7 -3

— - - - - - n -~ ~ - 4 .




Question 13 continued

5 = (p/ 7
(F':, /5

L / CroJJ € xX. when 5/ = 0

7

8w = 15 - Lo
/foéi)\/x-’f'f)

~ /& - 35

Sx = /8
x = A
NS ] & — 20 Aot

[ZDCV?)(l’fg)
3 ’ 4

/5 — Sx = 4 =+ 5
[,27,’9)[17“3) Zﬂfg x 73
16 — 20 =P lar3) t R[22 —4)
(of oc= =3
J5~3(~-3) = B[2(~3) ~¢)
24 = —1608
B = —2. .Y
(ef x =2 ‘
) 5—3(2) = A(2+3)
9 ~ SA
=7 = s &
S

}n‘ ). &8 = 2.4 dx

s 2x =Y x 5

S 39
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‘0T 0 O RO Turn over b



4

Question 13 continued

T | _5
| = In]2x 4] - 2.4 Jn] z+3] o)/
/- Z 7 ! ] a3

Vi

(09 /n 6 2.4 in 2] = [0-9/n2 —2¢ /n ¢) 7

0.9 In & — 2.4 (n 8 = 0.9/nd + 2.4 [n 4

8.3 1ln b —2.9ln2° — p g/, 2

3.3(In2 +1n3) =720, 2 —0.9 /, 2

331n2 4+ 33/043 =72 /02 —0.9/07
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14. The curve C, in the standard Cartesian plane, is defined by the equation
. -7 T

x=4sin2 — < y< =

R G

The curve C passes through the origin O

(a) Find the value of % at the origin.

2)

(b) (i) Use the small angle approximation for sin2y to find an equation linking x and y

for points close to the origin.

(i) Explain the relationship between the answers to (a) and (b)(i).

(2)
(¢) Show that, for all points (x, y) lying on C,
dx  gyb— x?
where a and b are constants to be found.
(3)
a/ 2/5, = ¥ Cos 2.4
Ay -
4
]
Adg =
x> § Cos £y
wher gz d9 = Lo
v Ax g
b/ Sin 2y & 74
/ v v
x = 4(2y)
x = g
</
u/ __The )iqe x=08yq = i
j = ;/7, has N acadieal Ty
os PWNJ P4 fﬁ)




Question 14 continued

C/ 0/<j i /-/——-——
Tz § cos Zj
I \
/ﬁ X= ( 31 Zo /} S Zb)%[m qu -/
/ 2 = sin Zj | s 2y = //@/%Zv
7 ( /H/Z/\F"[DQJ Ly /
a = r)nazj d Cos ngvl'pn 7)7/[
L \ \ C@)Zv’/\(f’ﬁ/\ 2.\\,}/
, N— }
Ay = —
adx S| —sin"2y
- ]
§) — %=
76
= /
16— x”
/6
| '5‘ \j/éﬁpcq
- i
2/€ -
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