## AS Level Maths: Algebraic Methods

1

$$
\mathrm{f}(x)=2 x^{3}-7 x^{2}-17 x+10
$$

Use the factor theorem and division to factorise $\mathrm{f}(x)$ completely.

2

$$
\begin{equation*}
\mathrm{g}(x)=4 x^{3}-8 x^{2}-35 x+75 \tag{2}
\end{equation*}
$$

(a) Use the factor theorem to show that $(x+3)$ is a factor of $\mathrm{g}(x)$
(b) Hence show that $\mathrm{g}(x)$ can be written in the form $\mathrm{g}(x)=(x+3)(a x+b)^{2}$, where $a$ and $b$ are constants to be found.
(Total for question 2 is $\mathbf{6}$ marks)

3

$$
\mathrm{f}(x)=x^{3}+6 x^{2}+p x+q
$$

Given that $f(4)=0$ and $f(-5)=36$
(a) Find the values of $p$ and $q$
(b) Factorise $\mathrm{f}(x)$ completely.

4

$$
\begin{equation*}
f(x)=2 x^{3}-x^{2}-13 x+14 \tag{2}
\end{equation*}
$$

(a) Use the factor theorem to show that $(x-2)$ is a factor of $\mathrm{f}(x)$
(b) Hence, or otherwise, solve the equation $2 x^{3}-x^{2}-13 x+14=0$ giving your answers to 2 decimal places where appropriate

$$
\mathrm{f}(x)=x^{3}+k x-2
$$

(a) Given that $(x-2)$ is a factor of $\mathrm{f}(x)$ find the value of $k$
(b) Solve the equation $\mathrm{f}(x)=0$

6

$$
\mathrm{f}(x)=x^{3}+6 x^{2}+4 x-15
$$

(a) Use the factor theorem to show that $x=-3$ is a solution to $\mathrm{f}(x)=0$
(b) Find the other solutions to the equation $\mathrm{f}(x)=0$ giving your answers to 2 decimal places

7 Prove that $x^{2}-4 x+7$ is positive for all values of $x$

8 Disprove the statement: $n^{2}-n+3$ is a prime number for all values of $n$

9 Prove that the sum of two consecutive odd numbers is a multiple of 4
$10 \quad$ Prove that $(x+y)^{2} \neq x^{2}+y^{2}$

11 (a) Prove that $n^{2}+n+11$ is prime for all integers between 1 and 5.
(b) Prove that $n^{2}+n+11$ is not prime for all values of $n$

12 Prove by exhaustion that the sum of two even positive integers less than 10 is also even.

13 "If I multiply a number by 2 and add 5 the result is always greater than the original number."
State, giving a reason, whether the above statement is always true, sometimes true or never true.

14 Prove that $(2 n+3)^{2}-(2 n-3)^{2}$ is a multiple of 6 for all values of $n$

15 Prove that the sum of the squares of two consecutive odd integers is always 2 more than a multiple of 8 .

16 Prove that $n^{2}+7 n+15>n+3$ is true for all values of $n$

17 (a) Prove that for positive values of $a$ and $b$

$$
\begin{equation*}
\frac{9 a}{b}+\frac{4 b}{a} \geq 12 \tag{4}
\end{equation*}
$$

(b) Prove, by counter example, that this is not true for all values of $a$ and $b$.

18 A student is investigating the following statement about natural numbers.

$$
\text { " } n^{3}-n \text { is a multiple of } 4 "
$$

(a) Prove, using algebra, that the statement is true for all odd numbers.
(b) Use a counterexample to show that the statement is not always true.

19 Prove that $n$ is a prime number greater than $5 \Rightarrow n^{4}$ has final digit 1
(Total for question 19 is 5 marks)
20 Jacob believes that for all positive integers $n^{3}+n+2$ is a multiple of 4 .
Which value of $n$ shown below is a counter example to Dan's belief?

$$
n=2 \quad n=3 \quad n=4 \quad n=5
$$

21 Given $(x+3)$ and $(x-5)$ are both factors of $\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=p x^{3}-7 x^{2}-43 x+q
$$

Find the values of $p$ and $q$.

22

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-4 x^{2}+9 x-10 \tag{2}
\end{equation*}
$$

(a) Use the factor theorem to show that $(x-2)$ is a factor of $\mathrm{f}(x)$.
(b) Show that $\mathrm{f}(x)=0$ only has one real root.

23 (a) Express $n^{3}-n$ as a product of three factors.
(b) Given that $n$ is a positive integer, prove that $n^{3}-n$ is a multiple of 6

24 (a) Prove that for all real values of $x$ :

$$
\begin{equation*}
x^{2}+4 x>2 x-4 \tag{3}
\end{equation*}
$$

(b) "If I add 2 to a number and then square the sum, the result is greater than the square of the original number."

State, giving a reason, if the above statement is always true, sometimes true or never true.

25

$$
\mathrm{f}(x)=4 x^{3}-8 x^{2}-35 x+75
$$

(a) Use the factor theorem to show that $(x+3)$ is a factor of $\mathrm{f}(x)$.
(b) Hence, show that $\mathrm{f}(x)$ can be written in the form $\mathrm{f}(x)=(x+3)(a x+b)^{2}$, where $a$ and $b$ are integers to be found.

$$
\begin{equation*}
f(x)=2 x^{3}-5 x^{2}-4 x+12 \tag{2}
\end{equation*}
$$

(a) Use the factor theorem to show that $(x-2)$ is a factor of $\mathrm{f}(x)$.
(b) Hence, show that $\mathrm{f}(x)=0$ only has two distinct real roots
(c) Sketch the graph of $y=\mathrm{f}(x)$
(d) Deduce, giving a reason for your answer, the number of real roots of the equation:

$$
\begin{equation*}
2 x^{3}-5 x^{2}-4 x+10=0 \tag{2}
\end{equation*}
$$

Given that $k$ is a constant and the curve with equation $y=\mathrm{f}(x+k)$ passes through the origin,
(e) find the two possible values of $k$

27 Prove that $\mathrm{n}^{3}+2$ is not divisible by 8

28 Prove that all cube numbers are either a multiple of 9 or 1 more or one less than a multiple of 9 .
(Total for question 28 is $\mathbf{4}$ marks)
29

$$
\mathrm{g}(x)=2 x^{3}+x^{2}-38 x+35
$$

(a) Use the factor theorem to show that $(x+5)$ is a factor of $\mathrm{g}(x)$.
(b) Hence, show that $\mathrm{g}(x)$ can be written as the product of three linear factors.
$30 \quad N$ is an integer that is not divisible by 3 . Prove that $N^{2}$ is of the form $3 p+1$, where $p$ is an integer.

## 31 In this question you must show detailed reasoning.

The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=2 x^{3}+9 x^{2}-6 x-5$
(a) Show that $f(1)=0$
(b) Solve the equation $\mathrm{f}(x)=0$

32 (a) Prove that the following statement is not true.
$m$ is an odd number greater than $1 \Rightarrow \mathrm{~m}^{2}+4$ is prime.
(b) By considering separately the case when n is odd and the case when n is even, prove that the following statement is true.
$n$ is a positive integer $\Rightarrow n^{2}+1$ is not a multiple of 4 .
(Total for question 32 is 5 marks)

33 The cubic polynomial $6 x^{3}+k x^{2}+25 x-12$ is denoted by $\mathrm{f}(x)$.
It is given that $(2 x+3)$ is a factor of $\mathrm{f}(x)$.
(a) Use the factor theorem to show that $k=31$.
(b) Using this value of $k$, factorise $\mathrm{f}(x)$ completely.
$34 \mathrm{f}(x)=3 x^{3}-19 x+24$
(a) Use the factor theorem to show that $(x+3)$ is a factor of $\mathrm{f}(x)$.
(b) Solve the equation $\mathrm{f}(x)=0$.

35 Find a counter example to disprove the statements:
(a) When $n$ is a prime number $n^{2}$ is always odd
(b) $(x+2)^{2}$ is always greater than $x^{2}+2$

