| Please check the examination details below before entering your candidate information |                    |                   |  |  |  |
|---------------------------------------------------------------------------------------|--------------------|-------------------|--|--|--|
| Candidate surname                                                                     |                    | Other names       |  |  |  |
| Centre Number Candidate Number Pearson Edexcel Level                                  |                    |                   |  |  |  |
| Tuesday 20 June 202                                                                   | 23                 |                   |  |  |  |
| Afternoon                                                                             | Paper<br>reference | 9MA0/31           |  |  |  |
| Mathematics Advanced PAPER 31: Statistics                                             |                    |                   |  |  |  |
| You must have:<br>Mathematical Formulae and Statistical                               | Tables (Gre        | reen), calculator |  |  |  |

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

#### **Instructions**

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
- there may be more space than you need.
   You should show sufficient working to make your methods clear.
- Answers without working may not gain full credit. Values from statistical tables should be quoted in full. If a calculator is used instead of tables the value should be given to an equivalent degree of accuracy. Inexact answers should be given to three significant figures unless otherwise stated.

### Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 50. There are 6 questions.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

## **Advice**

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over







1. The Venn diagram, where p and q are probabilities, shows the three events A, B and C and their associated probabilities.



(a) Find P(A)

The events B and C are independent.  $\rho(g) \times \rho(c) = \rho(\beta \cap c)$  (1)

(b) Find the value of p and the value of q

(3)

(c) Find P(A|B')

**(2)** 

$$a/0.13+0.25=0.38$$

$$b \mid 0.6 \times P(C) = 0.3$$

$$P(c) = 0.5$$

$$1 - 0.93 = 0.07$$

$$c/P(B') = 0.13 + 0.2 + 0.07$$

| Question | 1 | continued |
|----------|---|-----------|
|----------|---|-----------|

| 0.13 | <br>0.325 |
|------|-----------|
| 0.4  |           |

(Total for Question 1 is 6 marks)



2. A machine fills packets with sweets and  $\frac{1}{7}$  of the packets also contain a prize.

The packets of sweets are placed in boxes before being delivered to shops. There are 40 packets of sweets in each box.

The random variable T represents the number of packets of sweets that contain a prize in each box.

(a) State a condition needed for 
$$T$$
 to be modelled by B(40,  $\frac{1}{7}$ )

(1)

A box is selected at random.

- (b) Using  $T \sim B(40, \frac{1}{7})$  find
  - (i) the probability that the box has exactly 6 packets containing a prize,
  - (ii) the probability that the box has fewer than 3 packets containing a prize. (2)

Kamil's sweet shop buys 5 boxes of these sweets.

(c) Find the probability that exactly 2 of these 5 boxes have fewer than 3 packets containing a prize.

(2)

Kamil claims that the proportion of packets containing a prize is less than  $\frac{1}{7}$ 

A random sample of 110 packets is taken and 9 packets contain a prize.

- (d) Use a suitable test to assess Kamil's claim. You should
  - state your hypotheses clearly
  - use a 5% level of significance

**(4)** 





**Question 2 continued** 

$$P(X \le 9) = 0.0383$$



| Question 2 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |

| Question 2 continued |                                  |
|----------------------|----------------------------------|
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      |                                  |
|                      | Total for Question 2 is 9 marks) |



**3.** Ben is studying the Daily Total Rainfall, x mm, in Leeming for 1987

He used all the data from the large data set and summarised the information in the following table.

|           |    |         |         |         |         |         |          |           |           | $\bigcap$ |
|-----------|----|---------|---------|---------|---------|---------|----------|-----------|-----------|-----------|
| X         | 0  | 0.1–0.5 | 0.6–1.0 | 1.1–1.9 | 2.0–4.0 | 4.1–6.9 | 7.0–12.0 | 12.1–20.9 | 21.0–32.0 | tr        |
| Frequency | 55 | 18      | 18      | 21      | 17      | 9       | 9        | 6         | 2         | 29        |

(a) Explain how the data will need to be cleaned before Ben can start to calculate statistics such as the mean and standard deviation.

Lr 0 to 0.05

Using all 184 of these values, Ben estimates  $\sum x = 390$  and  $\sum x^2 = 4336$ 

- (b) Calculate estimates for
  - (i) the mean Daily Total Rainfall,
  - (ii) the standard deviation of the Daily Total Rainfall.

**(3)** 

Ben suggests using the statistic calculated in part (b)(i) to estimate the annual mean Daily Total Rainfall in Leeming for 1987

- (c) Using your knowledge of the large data set,
  - (i) give a reason why these data would not be suitable,
  - (ii) state, giving a reason, how you would expect the estimate in part (b)(i) to differ from the actual annual mean Daily Total Rainfall in Leeming for 1987

**(2)** 

$$\sigma = \sqrt{\frac{4336}{184} - (2.12)^2}$$



| Question 3 continued                     |
|------------------------------------------|
| c/ we only have data from May to October |
| so not representitive or all or the year |
| ii/ The actual rainfall would be higher  |
| because it would rain more in the        |
| winter.                                  |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
| (Total for Question 3 is 7 marks)        |



- **4.** A study was made of adult men from region *A* of a country. It was found that their heights were normally distributed with a mean of 175.4 cm and standard deviation 6.8 cm.
  - (a) Find the proportion of these men that are taller than 180 cm.

**(1)** 

A student claimed that the mean height of adult men from region B of this country was different from the mean height of adult men from region A.

A random sample of 52 adult men from region B had a mean height of 177.2 cm

The student assumed that the standard deviation of heights of adult men was  $6.8 \,\mathrm{cm}$  both for region A and region B.

- (b) Use a suitable test to assess the student's claim. You should
  - state your hypotheses clearly
  - use a 5% level of significance

**(4)** 

(c) Find the *p*-value for the test in part (b)

**(1)** 

$$S.d = \frac{6.8}{\sqrt{52}} N(\Pi 5.4, \frac{6.8^{\circ}}{52})$$



There is not enough evidence to support the syndents claim.

$$c/2 \times 2.81 = 0.0563$$



| Question 4 continued |                                 |
|----------------------|---------------------------------|
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
|                      |                                 |
| (To                  | otal for Question 4 is 6 marks) |
|                      | <b>X X</b>                      |



# 5. Tisam is playing a game.

She uses a ball, a cup and a spinner.

The random variable X represents the number the spinner lands on when it is spun. The probability distribution of X is given in the following table

| х      | 20 | 50 | 80 | 100   |
|--------|----|----|----|-------|
| P(X=x) | а  | b  | С  | d     |
| P(S)   | K  | K  | K  | K 100 |

where a, b, c and d are probabilities.

To play the game

- the spinner is spun to obtain a value of x
- Tisam then stands x cm from the cup and tries to throw the ball into the cup

The event S represents the event that Tisam successfully throws the ball into the cup.

To model this game Tisam assumes that

- $P(S | \{X = x\}) = \frac{k}{x}$  where k is a constant
- $P(S \cap \{X = x\})$  should be the same whatever value of x is obtained from the spinner

Using Tisam's model,

(a) show that 
$$c = \frac{8}{5}b$$

**(2)** 

(b) find the probability distribution of X

**(5)** 

Nav tries, a large number of times, to throw the ball into the cup from a distance of 100 cm.

He successfully gets the ball in the cup 30% of the time.  $5 \le 30\%$ 

(c) State, giving a reason, why Tisam's model of this game is not suitable to describe Nav playing the game for all values of X

(1)

$$a = b \times \frac{k}{50}$$

$$\frac{1}{8}c = \frac{1}{5}b$$

$$c = \frac{8}{5}b$$



**Question 5 continued** 

$$a \times k = b \times k$$

$$20 \qquad 50$$

$$d = 2b$$

$$a + b + c + d = 1$$

$$50 = 1$$

$$c = \frac{8}{5}(\frac{1}{5}) = \frac{8}{25}$$

$$a = \frac{2}{5}(\frac{1}{5}) = \frac{2}{25}$$



**Question 5 continued** 



k cannot be 30 for 20 cm (x=20) as the probability would be 30 20 which is greater than 1.

| Question 5 continued |                        |
|----------------------|------------------------|
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
|                      |                        |
| (Total for           | Question 5 is 8 marks) |



**6.** A medical researcher is studying the number of hours, *T*, a patient stays in hospital following a particular operation.

The histogram on the page opposite summarises the results for a random sample of 90 patients.

(a) Use the histogram to estimate 
$$P(10 < T < 30)$$

**(2)** 

For these 90 patients the time spent in hospital following the operation had

- a mean of 14.9 hours
- a standard deviation of 9.3 hours

Tomas suggests that T can be modelled by  $N(14.9, 9.3^2)$ 

(b) With reference to the histogram, state, giving a reason, whether or not Tomas' model could be suitable.

**(1)** 

Xiang suggests that the frequency polygon based on this histogram could be modelled by a curve with equation

$$y = kx e^{-x} \quad 0 \leqslant x \leqslant 4$$

where

- x is measured in tens of hours
- *k* is a constant
- (c) Use algebraic integration to show that

$$\int_0^n x e^{-x} dx = 1 - (n+1)e^{-n}$$
(4)

(d) Show that, for Xiang's model, k = 99 to the nearest integer.

**(3)** 

- (e) Estimate P(10 < T < 30) using
  - (i) Tomas' model of  $T \sim N(14.9, 9.3^2)$

(1)

(ii) Xiang's curve with equation  $y = 99xe^{-x}$  and the answer to part (c)

**(2)** 

The researcher decides to use Xiang's curve to model P(a < T < b)

(f) State one limitation of Xiang's model.

**(1)** 



# **Question 6 continued**



$$\frac{48.4}{90} = 0.538$$

b/ Not suitable - the distribution is

not symmetrical.

$$C/\int u dv dx = uv - \int v du dx$$

$$u = x$$
  $\frac{dv}{dx} = e^{-\frac{1}{2}}$ 

 $\frac{dU}{dx} = 1 \qquad v = -e^{-x}$ 



**Question 6 continued** 

$$\int a e^{-x} dx = -a e^{-x} - \int -e^{-x} dx$$

$$-ne^{-n}-e^{-n}-\left(-e^{\circ}\right)$$

$$-e^{-n}(n+1)+1$$

$$1 - (n+1)e^{-n}$$

$$K\left(1-(n+1)e^{-n}\right)=90$$

$$k(1-(4+1)e^{-4}) = 90$$

**Question 6 continued** 

$$e^{i} = 0.649$$
  
 $i/99(1-(3+1)e^{-3}) = 79.3$ 

$$99(1-(1+1)e^{-1})=26.2$$



f) The model would not work for

a line great Man 40 hour.



| Question 6 continued |                                    |
|----------------------|------------------------------------|
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      | (Total for Question 6 is 14 marks) |
|                      | TOTAL FOR STATISTICS IS 50 MARKS   |

