Name:	

Maths Genie Stage 14

Test D

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working out.
- Calculators may be used.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- · Check your answers if you have time at the end

1

$$\overrightarrow{OA} = 3a$$

$$\overrightarrow{OB} = 4b$$

P is the point on AB such that AP:PB = 1:4

$$\overrightarrow{OP} = k(3 a + b)$$

Find the value of k

$$\overrightarrow{AB} = -3a + 46$$

$$\overrightarrow{AP} = \frac{1}{5}(-3a + 46)$$

$$= -\frac{3}{5}a + \frac{4}{5}b$$

$$\frac{\partial \rho}{\partial \rho} = 3\alpha - \frac{3}{5}\alpha + \frac{4}{5}b$$

$$= \frac{12}{5}\alpha + \frac{4}{5}b$$

$$= \frac{4}{5}(3\alpha + b)$$

$$k = \frac{4}{5}$$

(Total for Question 1 is 3 marks)

2 The graph of y = f(x) is shown on the grid.

(a) On the grid above, sketch the graph of y = f(x) - 2

(1)

The graph of y = f(x) has a turning point at (1, -2).

(b) Write down the coordinates of the turning point of y = -f(x + 3)

(-2, 2)

(Total for Question 2 is 2 marks)

3

AB and CD are parallel and equal in length.

Prove that triangle ABE and triangle CDE are congruent.

ASA

(Total for Question 3 is 3 marks)

Work out the integer values that satisfy: $2x^2 - 10x + 3 < 0$

$$a = 2$$

$$b = -10$$

$$c = 3$$

Roots at
$$x = 4.68$$
 and 0.32

(Total for Question 4 is 4 marks)

5 Solve the simultaneous equations

$$x^2 + y^2 = 29$$
$$y = 2x - 1$$

$$x^2 + (2x - 1)^2 = 29$$

$$x^2 + (2x-1)(2x-1) = 29$$

$$x^2 + 4x^2 - 2x - 2x + 1 = 29$$

$$5x^2 - 4x + 1 = 29$$

$$5x^2 - 4x - 28 = 0$$

$$(5x-14)(x+2)=0$$

$$x = \frac{14}{5} \quad x = -2$$

$$y = 2\left(\frac{14}{5}\right) - 1 \qquad y = 2(-2) - 1$$

$$= \frac{23}{5}$$

$$x = \frac{14}{5}, y = \frac{23}{5}$$
 or $x = -2, y = -5$

6 Here is a speed-time graph.

Use 5 strips of equal width to find an estimate for the distance travelled in 10 seconds.

$$\frac{1}{2}(2)(25) = 25$$

$$\frac{1}{2}(25 + 35) \times 2 = 60$$

$$\frac{1}{2}(35 + 40) \times 2 = 75$$

$$\frac{1}{2}(40 + 41) \times 2 = 81$$

$$\frac{1}{2}(41 + 40) \times 2 = 81$$

A, B and C are points on the circumference of a circle, centre O. AOC is a diameter of the circle.

Prove that angle ABC is 90° You must **not** use any circle theorems in your proof.

$$AOB = 180 - 2x$$
 Angles in a triangle add to 180°
 $BOC = 180 - 2y$

$$180 - 2x + 180 - 2y = 180$$
 Angles on a Straight line add to 180° $180 = 2x + 2y$

90 = x + y

(Total for Question 7 is 4 marks)

(a) Write down the coordinates of the centre of the circle.

P is the point (1,-4) on the circle $x^2 + y^2 = 17$

(b) Work out the equation of the tangent to the circle at P.

Radius goes through
$$(0,0)$$
 and $(1,-4)$ χ_2 χ_2

Gradient of radius = $\frac{-4-0}{1-0}$

$$y = \frac{1}{4}x + c$$

$$-4 = \frac{1}{4} + C$$

$$-16 = 1 + 4c$$

$$-17 = 40$$

$$c = \frac{-17}{4}$$

$$y = \frac{1}{4}x - \frac{17}{4}$$

(Total for Question 8 is 5 marks)

9 There are n counters in a bag.

5 of the counters are red and the rest are blue.

Ross takes a counter from the bag at random and does not replace it. He then takes another counter at random from the bag.

The probability that Ross takes two blue counters is $\frac{3}{7}$

Find the value of n.

$$P(Blue, Blue) = \frac{n-5}{n} \times \frac{n-6}{n-1}$$

$$\frac{n-5}{n} \times \frac{n-6}{n-1} = \frac{3}{7}$$

$$\frac{(n-5)(n-6)}{n(n-1)} = \frac{3}{7}$$

$$7(n-5)(n-6) = 3n(n-1)$$

$$7(n^2-6n-5n+30) = 3n^2-3n$$

$$7n^2-77n+280 = 3n^2-3n$$

$$4n^2-74n+210 = 0$$

$$2n^2-37n+105 = 0$$

$$(2n-7)(n-15) = 0$$

$$n = \frac{7}{2} \qquad n=15$$

$$n \quad cannot be$$
an must be an number of the general properties.

15