N	2	m	Δ	•
IV	a	III		

Maths Genie Stage 13

Test C

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- · Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- Calculators may be used.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- · Check your answers if you have time at the end

1 The table shows information about the age of 80 teachers.

Age (years)	Frequency
$20 < a \leqslant 30$	23
30 < a ≤ 35	21
35 < a ≤ 40	14
40 < a ≤ 50	16
50 < a ≤ 65	6

On the grid, draw a histogram for the information in the table.

2 Simplify fully
$$\frac{2x+4}{5x-15} \div \frac{x^2-8x-20}{2x^2-x-15}$$

$$\frac{2x+4}{5x-15} \times \frac{2x^2-x-15}{x^2-8x-20}$$

$$\frac{2(x+2)(2x+5)(x-3)}{5(x-3)(x-10)(x+2)}$$

$$\frac{2(2x+5)}{5(x-10)}$$

$$\frac{2(2x+5)}{5(x-10)}$$

(Total for Question 2 is 3 marks)

3 Prove that the sum of 3 consecutive even numbers is always a multiple of 6.

$$2n + 2n + 2 + 2n + 4$$

(Total for Question 3 is 2 marks)

4

$$V = IR$$

I = 4.29 correct to 2 decimal places R = 16.173 correct to 3 decimal places

Work out the upper bound for V. Give your answer to 2 decimal places.

upper
$$V = upper I \times upper R$$

$$= 4.295 \times 16.1735$$

$$= 69.47$$

69.47

(Total for Question 4 is 3 marks)

5 (a) Write $3x^2 - 12x + 19$ in the form $a(x + b)^2 + c$ where a, b, and c are integers.

$$3(x^{2} - 4x) + 19$$

$$3((x - 2)^{2} - 4) + 19$$

$$3((x - 2)^{2} - 12 + 19$$

$$3((x - 2)^{2} + 7)$$

 $3(x-2)^2 + 7$

(b) Hence, or otherwise, write down the coordinates of the turning point of the graph of $y = 3x^2 - 12x + 19$

(2,7)

(Total for Question 5 is 4 marks)

Sketch the graph of $y = \sin x^{\circ}$ for $0 \le x \le 360$

(Total for Question 6 is 2 marks)

7

The area of the triangle is 22 m²

Work out the value of x.

Give your answer to 3 significant figures.

$$\frac{1}{2}(5.2)(8.5)\sin x = 22$$

$$\sin x = \frac{22}{\frac{1}{2}(5.2)(8.5)}$$

$$2 = \sin^{-1}(\frac{220}{221})$$

$$= 84.5$$

(Total for Question 7 is 4 marks)

1	1	1	2	2	3	3
				,		

Helen takes a card at random. She does not replace the card.

Helen then takes another card at random.

(a) Calculate the probability that both cards have the same number on them.

$$P(1,1) = \frac{3}{7} \times \frac{2}{6} = \frac{6}{42}$$

$$P(2,2) = \frac{2}{7} \times \frac{1}{6} = \frac{2}{42}$$

$$P(3,3) = \frac{2}{7} \times \frac{1}{6} = \frac{2}{42}$$

$$\frac{6}{42} + \frac{2}{42} + \frac{2}{42}$$

$$(or \frac{5}{21})$$
(3)

(b) Calculate the probability that the number on the first card Helen takes and the number on the second card Helen takes have a sum of 4.

$$P(1,3) = \frac{3}{7} \times \frac{2}{6} = \frac{6}{42}$$

$$P(2,2) = \frac{2}{42}$$

$$P(3,1) = \frac{2}{7} \times \frac{3}{6} = \frac{6}{42}$$

$$\frac{6}{42} + \frac{2}{42} + \frac{6}{42} = \frac{14}{42} \frac{\frac{14}{42}}{\frac{42}{42}} \frac{\frac{14}{42}}{\frac{6}{42}} \frac{\frac{14}{42}}{\frac{14}{42}} \frac{\frac{14}{42}}{\frac{14}{42}} \frac{\frac{14}{42}}{\frac{14}{42}} \frac{\frac{14}{42}}{\frac{14}{42}} \frac{\frac{14}{42}}{\frac{14}{42}} \frac{\frac{14}{42}}{\frac{14}{42}} \frac{\frac{14}{42}}{\frac{14}{42}} \frac{\frac{14}{42}}{\frac{14}{42}} \frac{\frac{14}{42}}{\frac$$

9 The diagram shows a cuboid ABCDEFGH.

$$AE = 4 \text{ cm}$$

 $AD = 5 \text{ cm}$
 $DC = 8 \text{ cm}$

Calculate the size of angle *ECA*. Give your answer correct to 3 significant figures.

$$AD^{2} + CD^{2} = AC^{2}$$

$$5^{2} + 8^{2} = AC^{2}$$

$$AC = \sqrt{5^{2} + 8^{2}}$$

$$= 9.43398...$$

$$tan x = \frac{4}{9.43398}$$

$$x = tan^{-1} \left(\frac{4}{9.43398} \right)$$

$$= 22.9769$$

$$= 23.0$$

23.0

(Total for Question 9 is 4 marks)

10

Angle *ABC* is obtuse. Work out the size of angle *ABC*. Give your answer to 3 significant figures.

$$\frac{Sin x}{33} = \frac{Sin 32}{18}$$

$$Sin x = \frac{Sin 32}{18} \times 33$$

$$= 0.97151...$$

$$x = Sin^{-1}(Ans)$$

$$= 76.29$$

$$x = 103.707$$

$$= 104$$

(Total for Question 10 is 4 marks)