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Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature.

Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.

Full marks may be obtained for answers to ALL questions.

The marks for the parts of questions are shown in round brackets, e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. 

Answers without working may not gain full credit.

1.
(a) 
Find the binomial expansion of
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in ascending powers of x, up to and including the term in x2.


Give each coefficient in its simplest form.

(5)

(b) 
Find the exact value of 
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Give your answer in the form k √2, where k is a constant to be determined.

(1)

(c) 
Substitute x = 
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 into your binomial expansion from part (a) and hence find an approximate value for √2.

Give your answer in the form 
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, where p and q are integers.
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___________________________________________________________________________
2. The curve C has equation
x2 – 3xy – 4y2 + 64 = 0.
(a) 
Find 
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 in terms of x and y.

(5)

(b) 
Find the coordinates of the points on C where 
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 = 0.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(6)

___________________________________________________________________________
3. 
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Figure 1
Figure 1 shows a sketch of part of the curve with equation y = 4x − 
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The curve meets the x-axis at the origin O and cuts the x-axis at the point A.

(a) 
Find, in terms of ln 2, the x coordinate of the point A.

(2)

(b) 
Find 
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 (3)
The finite region R, shown shaded in Figure 1, is bounded by the x-axis and the curve with equation y = 4x − 
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(c) 
Find, by integration, the exact value for the area of R.


Give your answer in terms of ln 2.
(3)

___________________________________________________________________________
4.
With respect to a fixed origin O, the lines l1 and l2 are given by the equations

l1: r =  
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where ( and ( are scalar parameters and p is a constant. 
The lines l1 and l2 intersect at the point A.

(a) 
Find the coordinates of A.

(2)

(b) 
Find the value of the constant p.

(3)

(c) 
Find the acute angle between l1 and l2, giving your answer in degrees to 2 decimal places.

(3)
The point B lies on l2 where ( = 1.
(d) 
Find the shortest distance from the point B to the line l1, giving your answer to 3 significant figures.

(3)

___________________________________________________________________________
5.
A curve C has parametric equations

x = 4t + 3,       y = 4t + 8 + 
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(a) 
Find the value of 
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 at the point on C where t = 2, giving your answer as a fraction in its simplest form.

(3)

(b) 
Show that the cartesian equation of the curve C can be written in the form 
y = 
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where a and b are integers to be determined.

(3)

___________________________________________________________________________
6.
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Figure 2

Figure 2 shows a sketch of the curve with equation y =
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The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis, and the y‑axis.
(a) 
Use the substitution x = 1 + 2 sin ( to show that
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where k is a constant to be determined.

(5)

(b) 
Hence find, by integration, the exact area of R.

(3)

___________________________________________________________________________
7.
(a) 
Express 
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 in partial fractions.

(3)
A team of biologists is studying a population of a particular species of animal.

The population is modelled by the differential equation
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where P is the population in thousands, and t is the time measured in years since the start of the study.
Given that P = 3 when t = 0,

(b)
solve this differential equation to show that 

P = 
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 (7)

(c) 
find the time taken for the population to reach 4000 for the first time.


Give your answer in years to 3 significant figures.

(3)

___________________________________________________________________________
8.

[image: image28.emf]
Figure 3

Figure 3 shows a sketch of part of the curve C with equation y = 3x.
The point P lies on C and has coordinates (2, 9).

The line l is a tangent to C at P. The line l cuts the x-axis at the point Q.

(a)
Find the exact value of the x coordinate of Q.

(4)
The finite region R, shown shaded in Figure 3, is bounded by the curve C, the x-axis, the y‑axis and the line l. This region R is rotated through 360° about the x-axis.

(b)
Use integration to find the exact value of the volume of the solid generated.


Give your answer in the form 
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, where p and q are exact constants.

[You may assume the formula V = 
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( r2h for the volume of a cone.]

(6)
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