Name:

GCSE (1 - 9)

Angles in Polygons

Instructions

- Use black ink or ball-point pen.
- Answer all Questions.
- Answer the Questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- · You must show all your working out.

Information

- The marks for each Question are shown in brackets
- use this as a guide as to how much time to spend on each Question.

Advice

- · Read each Question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every Question.
- Check your answers if you have time at the end

1 Work out the size of an exterior angle of a regular hexagon.

(Exterior angles always add to 360°)

$$\frac{360}{6} = 60$$

60 .

(Total for question 1 is 2 marks)

Work out the size of each interior angle in a regular octagon.

$$\frac{360}{8} = 45$$

$$180 - 45 = 135$$

135

(Total for question 2 is 2 marks)

Work out the size of each interior angle in a regular pentagon

$$\frac{360}{5} = 72$$

108 .

(Total for question 3 is 2 marks)

The size of each exterior angle in a regular polygon is 20°. Work out how many sides the polygon has.

$$\frac{360}{20} = \frac{36}{2} = 18$$

18

(Total for question 4 is 2 marks)

The size of each exterior angle in a regular polygon is 18°. Work out how many sides the polygon has.

$$\frac{360}{18} = \frac{180}{9} = 20$$

20

(Total for question 5 is 2 marks)

6 The size of each interior angle in a regular polygon is 165°. Work out how many sides the polygon has.

$$\frac{360}{15} = \frac{120}{5} = 24$$

24

(Total for question 6 is 2 marks)

ABCDE is a pentagon.

Work out the size of angle ABC.

Angle sum =
$$(n-2) \times 180$$

= $(5-2) \times 180$
= 3×180
= 540

Angles in a pentagon add to 540°

119 .

(Total for question 7 is 2 marks)

8

ABCDEF is a hexagon.

Angle
$$CDE = 2 \times Angle BCD$$

Angles in a hexagon =
$$(6-2) \times 180$$
 $2x = 2 \times 67$
= 4×180 = 134

$$2x = 2 \times 67$$

x = 67

(Total for question 8 is 3 marks)

9

ABCDEF is a hexagon.

Angle
$$BAF$$
 = Angle ABC = Angle AFE = Angle BCD .
Angle DEF = Angle CDE = 130°

Work out the size of angle *BAF*. You must show all your working.

Angles in a hexagon =
$$(6-2) \times 180$$

= 720°

$$720 - 130 - 130$$
 $720 - 260 = 460$

$$\frac{460}{4} = 115^{\circ}$$

.....115

(Total for question 9 is 3 marks)

Shape A is a regular triangle. Shape B is a regular octagon.

Another regular polygon, P, is shown on the diagram.

How many sides does polygon P have?

You must show your working.

Interior angle of
$$A = 60^{\circ}$$

Exterior angle of $B = \frac{360}{8} = 45^{\circ}$

Interior angle of $B = 180 - 45$

$$= 135^{\circ}$$

Interior angle of $P = 360 - 60 - 135$

$$= 165^{\circ}$$

Exterior angle of $P = 180 - 165$

$$= 15^{\circ}$$

24

The diagram shows three regular pentagons meeting at a point.

Work out the size of the angle marked x. You must show all your working.

Exterior angle of pertagon =
$$\frac{360}{5} = 72$$

Interior angle of pertagon = $180-72$

= 108°

36

(Total for question 11 is 3 marks)

The diagram shows a regular pentagon, ABCDE, and a square, EDFG.

The lines CD and DG are both sides of another regular polgon, P.

How many sides does polygon P have?

You must show how you got your answer.

Exterior angle of pentagon =
$$\frac{360}{5} = 72$$

Interior angle of pentagon = $\frac{360}{5} = 72$

= $180 - 72$

= 108

Interior angle of $P = 360 - 90 - 108$

= 162°

Exterior angle of $P = 180 - 162$

= 18

(Total for question 12 is 4 marks)