Mathematics
 Paper 1 (Non-Calculator) Higher Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may not be used.

- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

mathsgenie.co.uk

Higher Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

Area of a trapezium $=\frac{1}{2}(a+b) h$
Volume of a prism $=$ area of cross section \times length Where r is the radius and d is the diameter:

Circumference of a circle $=2 \pi \mathrm{r}=\pi d$
Area of a circle $=\pi r^{2}$

Quadratic formula

The solution of $a x^{2}+b x+c=0$
where $a \neq 0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In any right-angled triangle where $a, \mathrm{~b}$ and c are the length of the sides and c is the hypotenuse:

$$
a^{2}+b^{2}=c^{2}
$$

In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:

$$
\sin A=\frac{a}{c} \quad \cos A=\frac{b}{c} \quad \tan A=\frac{a}{b}
$$

In any triangle ABC where a, b and c are the length of the sides:
sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Probability

Where $\mathrm{P}(A)$ is the probability of outcome A and $\mathrm{P}(B)$ is the probability of outcome B :

$$
\begin{aligned}
& \mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \text { and } B) \\
& \mathrm{P}(A \text { and } B)=\mathrm{P}(A \text { given } B) \mathrm{P}(B)
\end{aligned}
$$

1 Work out $5.92 \div 0.16$

$$
\frac{5.92}{0.16}=\frac{592}{16}
$$

$$
1 6 \longdiv { 5 ^ { 5 } 9 ^ { 1 1 2 } }
$$

(Total for Question 1 is 3 marks)

2 Write 324 as a product of powers of its prime factors.

$$
2 \times 2 \times 3 \times 3 \times 3 \times 3
$$

(Total for Question 2 is $\mathbf{3}$ marks)

3 (a) Work out $2 \frac{2}{3}+1 \frac{3}{5}$
Give your answer as a mixed number.

$$
\begin{aligned}
& 5 \times \frac{8}{3}+\frac{8}{5} \times 3 \\
& 5 \times 3 \\
& \frac{40}{15}+\frac{24}{15}=\frac{64}{15}=4 \frac{4}{15}
\end{aligned}
$$

(2)
(b) Work out $\frac{2}{3} \div \frac{3}{4}$

$$
\frac{2}{3} \times \frac{4}{3}=\frac{8}{9}
$$

\qquad
(2)
(Total for Question 3 is 4 marks)
$4 \quad$ Work out the value of $\frac{5^{-3} \times 5^{7}}{5}$

$$
\frac{5^{4}}{5^{1}}=5^{3}=125
$$

5 Tracey writes down three numbers a, b and c.

$$
\begin{array}{lc}
a: b=3: 5 & \times 4 \\
a: c=4: 7 & \times 3
\end{array}
$$

(a) Find $a: b: c$

$$
\begin{array}{cc}
a: b & a: c \\
12: 20 & 12: 21
\end{array}
$$

$$
12: 20: 21
$$

(2)

Jamie writes down three numbers d, e and f.

$$
\begin{aligned}
& d=2 e \\
& f=3 d
\end{aligned}
$$

(b) Find $e: d: f$

$$
\begin{aligned}
& \text { Let } e=1 \\
& d=2(1)=2 \\
& f=3(2)=6
\end{aligned}
$$

The diagram shows a cuboid.

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

The cuboid has height 3 m
The volume of the cuboid is $21 \mathrm{~m}^{3}$
The pressure on the floor due to the cuboid is 25 newtons $/ \mathrm{m}^{2}$ (Pressure)
Work out the force exerted by the cuboid on the floor.

$$
\begin{aligned}
\text { Area of base } & =\frac{21}{3}=7 \mathrm{~m}^{2} \quad(\text { area }) \\
25 & =\frac{\text { force }}{7} \\
\text { force } & =25 \times 7 \quad 175
\end{aligned}
$$

7 In a bag there are counters.
The counters are all either red or blue or yellow.

$$
\begin{aligned}
& \text { The number of } \\
& \text { red counters }
\end{aligned}: \begin{aligned}
& \text { The number of } \\
& \text { blue counters }
\end{aligned}: \begin{aligned}
& \text { The number of } \\
& \text { yellow counters }
\end{aligned}=4: 5: 8
$$

The number of yellow counters is 24 more than the numbers of blue counters.
Work out the total number of counters in the bag.

8
$A B C$ is a triangle.

$A E C$ and $A D B$ are straight lines.
$E D$ is parallel to $C B$.
Angle $C E D=122^{\circ}$
Angle $A B C=59^{\circ}$
Work out the size of angle $C A B$.
You must give a reason for each stage of your working.

$$
\begin{array}{ll}
A E D=58^{\circ} & \begin{array}{l}
\text { Angles on a straight line } \\
\text { add to } 180^{\circ}
\end{array} \\
A D E=59^{\circ} & \begin{array}{l}
\text { Corresponding angles are } \\
\text { equal }
\end{array} \\
C A B=63^{\circ} & \begin{array}{l}
\text { Angles in a triangle } \\
\text { add to } 180^{\circ}
\end{array}
\end{array}
$$

9 Roy spins a biased 5-sided spinner 48 times.

Here are his results.

Score	1	2	3	4	5
Frequency	9	10	6	7	16

Roy is now going to spin the spinner another two times.
Work out an estimate for the probability that he gets a score of 5 both times

$$
\begin{aligned}
\frac{16}{48}=\frac{8}{24}=\frac{4}{12} & =\frac{1}{3} \\
\frac{1}{3} \times \frac{1}{3} & =\frac{1}{9} \quad \frac{1}{9}
\end{aligned}
$$

(Total for Question 9 is 2 marks)

10 Solve the simultaneous equations

$$
\begin{aligned}
2 x-y & =4 \quad \times 5 \\
5 x+2 y & =7 \quad \times 2 \\
10 x-5 y & =20 \\
10 x+4 y & =14 \\
-9 y & =6 \\
y & =\frac{6}{-9}=-\frac{2}{3}
\end{aligned}
$$

$$
2 x--\frac{2}{3}=4
$$

$$
2 x+\frac{2}{3}=4
$$

$$
6 x+2=12
$$

$$
\begin{aligned}
6 x & =10 \\
x & =\frac{10}{6}=\frac{5}{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{5}{3} \\
& y=-\frac{2}{3}
\end{aligned}
$$

(Total for Question 10 is 4 marks)

11 Work out the value of $8^{\frac{4}{3}}+\left(\frac{1}{3}\right)^{-3}$

$$
\begin{gathered}
8^{\frac{4}{3}}=2^{4}=16 \\
\left(\frac{1}{3}\right)^{-3}=3^{3}=27
\end{gathered}
$$

$$
16+27=43
$$

43
(Total for Question 11 is $\mathbf{3}$ marks)
12 There are p counters in a bag.
60 of the counters are white.
Jill takes at random 50 counters from the bag.
8 of these 50 counters are white.
Work out an estimate for the value of p.

$$
\begin{aligned}
& \frac{60^{2}}{P} \stackrel{\times \frac{x+5}{2}}{=} \frac{8}{50} \\
& \frac{60}{8}=\frac{30}{4}=\frac{15}{2} \\
& 50 \times \frac{15}{2} \\
& 25 \times 15=375
\end{aligned}
$$

13 The cumulative frequency table shows the height, in cm , of some tomato plants.

Height	Cumulative Frequency
$140<\mathrm{h} \leqslant 150$	7
$140<\mathrm{h} \leqslant 160$	17
$140<\mathrm{h} \leqslant 170$	32
$140<\mathrm{h} \leqslant 180$	51
$140<\mathrm{h} \leqslant 190$	57
$140<\mathrm{h} \leqslant 200$	60

(a) On the grid, plot a cumulative frequency graph for this information.

(b) Use the graph to find an estimate for the median height of the plants.
$14 x$ is inversely proportional to y
Complete the table of values.

x	80	16	5	4
y	2	10	32	40

$$
\begin{aligned}
x & =\frac{k}{y} \\
80 & =\frac{k}{2} \\
k & =160
\end{aligned}
$$

(Total for Question 14 is $\mathbf{3}$ marks)

15 The straight line \mathbf{L} has equation $2 y+3 x-9=0$
Find an equation of the straight line perpendicular to \mathbf{L} that passes through (3, -7)

$$
\begin{aligned}
& 2 y=-3 x+9 \\
& y=-\frac{3}{2} x+\frac{9}{2} \\
& m=-\frac{3}{2} \quad \therefore \text { perp. } n=\frac{2}{3} \\
& y=\frac{2}{3} x+c \quad(3,-7) \\
&-7=\frac{2}{3}(3)+c \quad x \\
&-7=2+c \\
& c=-9
\end{aligned}
$$

(Total for Question 15 is $\mathbf{3}$ marks)

16 The box plot shows the number of visitors to a park on each of 180 days.

Work out an estimate for the number of days there were fewer than 350 visitors to the park.

$$
\begin{aligned}
& \frac{3}{4} \text { or } 180 \quad \text { upper quartile } \\
& \frac{180}{4}=45 \quad 45 \times 3=135 \quad 135
\end{aligned}
$$

(Total for Question 16 is 2 marks)

17 Prove that the difference between the squares of two consecutive odd numbers is a multiple of 8.

$$
\begin{aligned}
& \text { odd number }=2 n+1 \quad \text { next odd number }=2 n+3 \\
& (2 n+3)^{2}-(2 n+1)^{2} \\
& (2 n+3)(2 n+3)-(2 n+1)(2 n+1) \\
& \left(4 n^{2}+6 n+6 n+9\right)-\left(4 n^{2}+2 n+2 n+1\right) \\
& 4 n^{2}+12 n+9-4 n^{2}-4 n-1 \\
& 8 n+8 \\
& 8(n+1) \quad \therefore \text { always a multiple of } 8
\end{aligned}
$$

18

A and B is a point on the circumference of a circle, centre O.
$A C$ is a tangent to the circle.
$O B C$ is a straight line.

$$
\begin{aligned}
& O A=5 \mathrm{~cm} \\
& A C=12 \mathrm{~cm}
\end{aligned}
$$

Find the length of $B C$.
You must show all your working.

$$
\begin{aligned}
O A^{2}+A C^{2} & =O C^{2} \\
5^{2}+12^{2} & =O C^{2} \\
169 & =O C^{2} \\
O C & =13 \mathrm{~cm}
\end{aligned}
$$

$O B$ is a radius $\therefore 5 \mathrm{~cm}$

$$
\begin{aligned}
B C & =13-5 \\
& =8 \mathrm{~cm}
\end{aligned}
$$

19 A cone has height 12 cm and volume $72 \pi \mathrm{~cm}^{3}$.

Find the diameter of the cone.
Give your answer in the form $a \sqrt{b}$ where a is an integer and b is a prime number.

$$
\begin{array}{rlr}
72 \pi & =\frac{1}{3} \pi^{2}(12) & \\
72 & =4 r^{2} & \frac{72}{4}=\frac{36}{2}=18 \\
r^{2} & =18 \\
r & =\sqrt{18} \\
& =\sqrt{9} \sqrt{2} \\
& =3 \sqrt{2}
\end{array}
$$

$$
\begin{aligned}
& \text { Diameter }=2 \times 3 \sqrt{2} \\
&=6 \sqrt{2} \\
& 6 \sqrt{2} \quad \mathrm{~cm}
\end{aligned}
$$

20
A, B and C are three points such that

$$
\begin{aligned}
& \overrightarrow{A B}=6 \mathbf{a}+9 \mathbf{b} \\
& \overrightarrow{A C}=10 \mathbf{a}+15 \mathbf{b}
\end{aligned}
$$

(a) Prove that A, B and C lie on a straight line.

$$
\begin{aligned}
& \overrightarrow{A B}=3(2 a+3 b) \\
& \overrightarrow{A C}=5(2 a+3 b)
\end{aligned}
$$

$\overrightarrow{A B}$ and $\overrightarrow{A C}$ are both multiples or $2 a+3 b$ and both pass through $A . \therefore$ on a straight Three points D, E and F lie on a straight line such that

$$
\begin{aligned}
& \overrightarrow{D E}=4 \mathbf{a}-5 \mathbf{b} \\
& \overrightarrow{E F}=-12 \mathbf{a}+15 \mathbf{b}
\end{aligned}
$$

Find the ratio

$$
\begin{aligned}
& \text { length of } D F \text { : length of } D E \\
& \begin{aligned}
\overrightarrow{D F} & =\overrightarrow{D E}+\overrightarrow{E F} \\
& =\binom{4}{-5}+\binom{-12}{15}=\binom{-8}{10} \\
& =-8 a+10 b \\
\overrightarrow{D E} & =\binom{4}{-5} \quad \overrightarrow{D F}=\binom{-8}{10}
\end{aligned}
\end{aligned}
$$

DF is twice as long \qquad

21 The functions f and g are such that

$$
\mathrm{f}(x)=3 x^{2}+1 \text { for } x>0
$$

and

$$
\mathrm{g}(x)=2 x-3
$$

(a) Find $\mathrm{f}^{1}(x)$

$$
\begin{aligned}
\rightarrow \text { square } & \rightarrow \times 3 \longrightarrow+1 \\
f^{-1}(x) & =\sqrt{\frac{x-1}{3}}
\end{aligned}
$$

$$
f^{-1}(x)=\sqrt{\frac{x-1}{3}}
$$

(2)
(b) Solve $\operatorname{gf}(x)=95$

$$
\begin{aligned}
2\left(3 x^{2}+1\right)-3 & =95 \\
6 x^{2}+2-3 & =95 \\
6 x^{2}-1 & =95 \\
6 x^{2} & =96 \\
x^{2} & =16 \\
x & =4 x x=4
\end{aligned}
$$

22 Write $\frac{\sqrt{8}}{3-\sqrt{2}}$ in the form $\frac{a \sqrt{2}+b}{c}$ where a, b and c are integers.

$$
\begin{aligned}
& \sqrt{8}=2 \sqrt{2} \\
& \frac{2 \sqrt{2}(3+\sqrt{2})}{(3-\sqrt{2})}(3+\sqrt{2}) \\
& \frac{6 \sqrt{2}+4}{9+3 \sqrt{2}-3 \sqrt{2}-2} \\
& \frac{6 \sqrt{2}+4}{7}
\end{aligned}
$$

$$
\frac{6 \sqrt{2}+4}{7}
$$

23 Find the set of values of x for which

$$
25-x^{2}>0 \quad \text { and } \quad 3 x^{2}-17 x-6<0
$$

You must show all your working.

$$
(5+x)(5-x)>0 \quad 3 x^{2}-17 x-6<0
$$

$$
3 \times 6
$$

$$
=18
$$

$$
118
$$

$$
\begin{aligned}
& 3 x^{2}+x-18 x-6 \\
& (x-6)(3 x+1) \\
& x=6 \quad x=-\frac{1}{3}
\end{aligned}
$$

Both satisfied when

$$
\underline{-\frac{1}{3}<x<5}
$$

$$
-\frac{1}{3}<x<5
$$

(Total for Question 23 is 5 marks)

