N		1		
	a	111	U	_

Maths Genie Stage 14

Test C

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- Calculators may be used.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- · Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 The graph of y = f(x) is shown below.

The coordinates of the maximum point of this curve are (1, 6).

Write down the coordinates of the maximum point of the curve with equation

(a)
$$y = f(x + 4)$$

(-3, 6)

(b) y = -f(x)

(1,-6)

(c) y = f(x) + 2

(1,8)

(Total for Question 1 is 3 marks)

2 Solve $x^2 - 2x + 24 \ge 0$

$$(x-6)(x+4) > 0$$

roots at x=6 and x=4

25-4 or 2>6

(Total for Question 2 is 3 marks)

3 Here is a speed-time graph for a train journey between 2 stations.

Time (t seconds)

The train travelled 2.5 km in T seconds.

Work out the value of T.

$$\frac{1}{2}(32)(25) = 400$$

$$(95-32)(25) = 1575$$

$$2500 - 1575 - 400 = 525M$$

$$\frac{1}{2}x(25) = 525$$

$$\frac{1}{2}x = 21$$

$$\frac{1}{2}x = 42$$
(Total for Question 3 is 3 marks)

4 The point A has the coordinates (9,2)

The point B has the coordinates (3,4)

Find the equation of the perpendicular bisector to AB.

midpoint of AB =
$$\left(\frac{9+3}{2}, \frac{2+4}{2}\right)$$

= $(6,3)$

Gradient of
$$AB = \frac{4-2}{3-9}$$

$$= \frac{2}{-6}$$

$$= -\frac{1}{3}$$

$$y = 3x + c$$

$$C = -15$$

y=30 -15

(Total for Question 4 is 4 marks)

ABC is a triangle.

CDEF is a parallelogram such that:

D is the midpoint of AC

E is the midpoint of AB

F is the midpoint of BC

Prove that triangle ADE is congruent to triangle BEF.

AED = EBF Corresponding angles are equal

AE = EB E is the Midpoint of AB

SAS

(Total for Question 5 is 4 marks)

6 Solve algebraically the simultaneous equations

$$x^{2} - 2y^{2} = 17$$

$$3x + 2y = 13$$

$$3x = 13 - 2y$$

$$x = \frac{13 - 2y}{3}$$

$$\left(\frac{13-2y}{3}\right)^2 - 2y^2 = 17$$

$$\frac{(13-2y)(13-2y)}{9}-2y^2=17$$

$$(13-2y)(13-2y)-18y^2=153$$

$$169 - 26y - 26y + 4y^2 - 18y^2 = 153$$

$$-14y^2 - 52y + 169 = 153$$

$$-14y^2 - 52y + 16 = 0$$

$$7y^2 + 26y - 8 = 0$$

$$(7y-2)(y+4)=0$$

$$y = \frac{2}{7}$$
 $y = -4$

$$x = \frac{13 - 2(\frac{2}{7})}{3}$$

$$x = \frac{13 - 2(-4)}{3}$$

$$= \frac{29}{7}$$

$$x = \frac{29}{7}, y = \frac{2}{7} \text{ or } x = 7, y = -4$$

(Total for Question 6 is 5 marks)

7 The diagram shows a parallelogram.

$$\overrightarrow{OA} = 5a$$

$$\overrightarrow{OB} = 3b$$

D is the point on OC such that OD:DC = 2:1

E is the midpoint of BC

Show that A, D and E are on the same straight line.

$$\overrightarrow{OC} = 5a + 3b$$

$$\overrightarrow{OD} = \frac{2}{3}(5a + 3b)$$

$$= \frac{10}{3}a + 2b$$

$$\overrightarrow{AD} = -5a + \frac{10}{3}a + 26$$

$$= -\frac{5}{3}a + 26$$

$$= -\frac{5}{2}a + 36$$

$$= \frac{1}{3}(-5a + 66)$$

$$= \frac{1}{2}(-5a + 66)$$

(Total for Question 7 is 4 marks)

A, B and C are points on the circumference of a circle, centre O. DCE is a tangent to the circle.

Prove that angle BCE and angle BAC are equal.

$$BFC = x 180 - 90 - (90 - x)$$

$$180 - 90 - 90 + x = x$$

Angles in a triangle add to

BAC = x Angles in the same segment

9 There are some red counters and some blue counters in a bag.

The ratio of red counters to blue counters is 3:1

50c Rey

Two counters are removed at random.

4x Total

The probability that both the counters taken are blue is $\frac{2}{35}$

Work how many counters were in the bag before any counters were removed.

$$P(Blue, Blue) = \frac{1}{4} \times \frac{x-1}{4x-1}$$

$$\frac{1}{4} \times \frac{x-1}{4x-1} = \frac{2}{35}$$

$$\frac{x-1}{16x-4} = \frac{2}{35}$$

$$35(x-1) = 2(16x - 4)$$

$$35x - 35 = 32x - 8$$

$$3x = 27$$

$$x = 9$$

$$4 \times 9 = 36$$