Higher (Grade 7-9) GCSE Mini Test 2

$$
\begin{gathered}
1 \text { Solve } \frac{2}{x+3}+\frac{9}{x+7}=1 \\
\mathrm{x}=5 \\
\mathrm{X}=-4
\end{gathered}
$$

2

Work out the value of x.
Give your answer to 1 decimal place.

4 Write $7 \sqrt{50}$ in the form $k \sqrt{2}$, where k is an integer.

$35 \sqrt{ } 2$

$6 y$ is inversely proportional to x
When $y=5, x=0.5$
Find the value of y when $x=0.25$

10

8

Calculate the acceleration in the first 20 seconds

10 The coordinates of the maximum point of a curve are ($2,-5$)

Write down the coordinates of the maximum point of the curve with equation $y=\mathrm{f}(x)+2$
$(2,-3)$

11 Prove algebraically that the sum of the squares of any 2 even positive integers is always a multiple of 4 .
$(2 n)^{2}+(2 m)^{2}$
$4 n^{2}+4 m^{2}$
$4\left(n^{2}+m^{2}\right)$

13
Solve $2 x^{2}-7 x-4<0$

$$
-\frac{1}{2}<x<4
$$

15 Write $x^{2}+3 x-2$ in the form $(x+a)^{2}+b$ where a and b are integers.

$$
\left(x+\frac{3}{2}\right)^{2}-\frac{17}{4}
$$

17 Cone A and Cone B are mathematically similar.
The height of Cone A is 12 cm and the height of Cone B is 8 cm .

The total surface area of Cone A is $60 \mathrm{~cm}^{2}$.
Calculate the total surface area of Cone B.

$$
\frac{80}{3} \mathrm{~cm}^{2}
$$

19 Here are the first 5 terms of a quadratic sequence.

$$
\begin{array}{lllll}
-2 & 1 & 8 & 19 & 34
\end{array}
$$

Find an expression, in terms of n, for the nth term of this sequence.

$$
2 n^{2}-3 n-1
$$

12 There are 10 counters in a bag.
5 of the counters are red.
3 of the counters are blue.
2 of the counters are green.
Billie takes two counters are taken at random from the bag.
Work out the probability that both of the counters Billie takes are the same colour.

14 Solve the simultaneous equations:

$$
\begin{aligned}
& 2 x^{2}-y^{2}=41 \\
& 2 x+3 y=1
\end{aligned}
$$

$x=5$
or
$y=-3$

16 Prove algebraically that the recurring decimal 0.135° can be written as $\frac{5}{37}$
$x=0.135 \quad x=\frac{135}{999}$
$1000 x=135.135$
$x=\frac{5}{37}$
$999 x=135$

18

Prove that triangle $A B D$ is congruent to triangle $B C D$.
180-83-56=41
180-83-41=56D
$\mathrm{ABD}=\mathrm{BDC} \quad \mathrm{BD}$ is common to both B^{83} aingle
$\mathrm{ADB}=\mathrm{CBD} \quad \mathrm{ASA}$

Sketch the graph of $y=\cos x^{\circ}$ for $0 \leq x \leq 360$

