C2 COORDINATE GEOMETRY

1 Write down an equation of the circle with the given centre and radius in each case.

a	centre $(0,0)$	radius 5	b	centre $(1,3)$	radius 2	c	centre $(4,-6)$	radius 1
d	centre $(-1,-8)$	radius 3	e	centre $\left(-\frac{1}{2}, \frac{1}{2}\right)$	radius $\frac{1}{2}$	\mathbf{f}	centre $(-3,9)$	radius $2 \sqrt{3}$

2 Write down the coordinates of the centre and the radius of each of the following circles.
a $x^{2}+y^{2}=16$
b $(x-6)^{2}+(y-1)^{2}=81$
c $(x+1)^{2}+(y-4)^{2}=121$
d $(x-7)^{2}+y^{2}=0.09$
e $(x+2)^{2}+(y+5)^{2}=32$
f $(x-8)^{2}+(y+9)^{2}=108$

3 Find the coordinates of the centre and the radius of each of the following circles.
a $x^{2}+y^{2}-4 y+3=0$
b $x^{2}+y^{2}-2 x-10 y-23=0$
c $x^{2}+y^{2}+12 x-8 y+36=0$
d $x^{2}+y^{2}-2 x+16 y=35$
e $x^{2}+y^{2}=8 x-6 y$
f $x^{2}+y^{2}+10 x-2 y-19=0$
g $4 x^{2}+4 y^{2}-4 x-24 y+1=0$
h $9 x^{2}+9 y^{2}+6 x-24 y+8=0$

4 Find an equation of the circle
a with centre $(1,-2)$ which passes through the point $(4,2)$,
b with centre $(-5,7)$ which passes through the point $(0,5)$.
5 Find an equation of the circle in which $A B$ is a diameter in each case.
a $A(1,-2) \quad B(3,-2)$
b $A(-7,2)$
B $(1,8)$
c $A(1,1)$
$B(4,0)$

6 The points $P(0,1), Q(3,10)$ and $R(6,9)$ all lie on circle C.
a Show that $\angle P Q R$ is a right-angle.
b Hence, show that C has the equation $x^{2}+y^{2}-6 x-10 y+9=0$.
7 Find in each case whether the given point lies inside, outside or on the given circle.
a $(0,-9)$
$x^{2}+y^{2}=64$
b $(4,7)$
$x^{2}+y^{2}-2 x-6 y-26=0$
c $(7,-3)$
$x^{2}+y^{2}+10 x-4 y=140$
d $(-4,1)$
$x^{2}+y^{2}+2 x+8 y-13=0$

8 The point P lies on the circle with equation $x^{2}+y^{2}+12 x-6 y+27=0$ and the point Q has coordinates $(8,1)$. Find the minimum length of $P Q$ giving your answer in the form $k \sqrt{2}$.

9 Find an equation of the circle which crosses the x-axis at the points $(2,0)$ and $(8,0)$ and touches the y-axis at the point $(0,4)$.

10 Given that the circle with equation $x^{2}+y^{2}+8 x-12 y+k=0$ does not touch or cross either of the coordinate axes, find the set of possible values of the constant k.

11 The circle C passes through the points P, Q and R with coordinates $(-2,-2),(2,-4)$ and $(7,1)$ respectively.
a Find an equation of the perpendicular bisector of the points P and Q.
b Find the coordinates of the centre of C.
c Find an equation of C.

12 The circle C has the equation $x^{2}+y^{2}-4 x-4 y-28=0$.
a Find the distance of the point $A(10,8)$ from the centre of C.
The tangent to C at the point B passes through A.
b Find the length $A B$.
13 A circle has the equation $x^{2}+y^{2}+6 x-2 y=0$ and passes through the point P.
Given that the tangent to the circle at P passes through the point $Q(2,6)$, find the exact length $P Q$ in its simplest form.

14 The circle C has the equation $x^{2}+y^{2}-6 x-10 y+16=0$ and passes through the point $A(6,2)$.
a Find the coordinates of the centre of C.
b Find the gradient of the normal to the circle at A.
c Find an equation of the normal to the circle at A.
15 Find an equation of
a the normal to the circle with equation $x^{2}+y^{2}+4 x=13$ at the point $(-1,4)$,
b the tangent to the circle with equation $x^{2}+y^{2}+2 x+4 y-40=0$ at the point $(5,1)$,
c the tangent to the circle with equation $x^{2}+y^{2}-10 x+4 y+4=0$ at the point $(2,2)$.
16 Find the coordinates of the points where the circle with equation $x^{2}+y^{2}-6 x+6 y-16=0$ intersects the coordinate axes.

17 Find in each case the coordinates of the points where the line l intersects the circle C.
a $l: y=x-4$
$C: x^{2}+y^{2}=10$
b $l: 3 x+y=17$
C: $x^{2}+y^{2}-4 x-2 y-15=0$
c $l: y=2 x+2$
$C: 4 x^{2}+4 y^{2}+4 x-8 y-15=0$

18 The line with equation $y=1-x$ intersects the circle with equation $x^{2}+y^{2}+6 x+2 y=27$ at the points A and B.
Find the length of the chord $A B$, giving your answer in the form $k \sqrt{2}$.
19 Show that the line with equation $y=2 x+1$ is a tangent to the circle with equation $x^{2}+y^{2}-8 x-8 y+27=0$ and find the coordinates of the point where they touch.

20 The line with equation $y=x+k$ is a tangent to the circle with equation $x^{2}+y^{2}+6 x-8 y+17=0$. Find the two possible values of k.

21 The line with equation $y=m x$ is a tangent to the circle with equation $x^{2}+y^{2}-8 x-16 y+72=0$. Find the two possible values of m.

22 The line with equation $2 x+3 y=k$ is a tangent to the circle with equation $x^{2}+y^{2}+6 x+4 y=0$. Find the two possible values of k.

23 The circle with equation $x^{2}+y^{2}-4 x-6 y=7$ crosses the y-axis at the points A and B.
a Find the coordinates of the points A and B.
b Find the coordinates of the point where the tangent to the circle at A intersects the tangent to the circle at B.

