C2 DIFFERENTIATION

1

The diagram shows a baking tin in the shape of an open-topped cuboid made from thin metal sheet. The base of the tin measures $x \mathrm{~cm}$ by $2 x \mathrm{~cm}$, the height of the tin is $h \mathrm{~cm}$ and the volume of the tin is $4000 \mathrm{~cm}^{3}$.
a Find an expression for h in terms of x.
b Show that the area of metal sheet used to make the $\operatorname{tin}, A \mathrm{~cm}^{2}$, is given by

$$
A=2 x^{2}+\frac{12000}{x} .
$$

c Use differentiation to find the value of x for which A is a minimum.
d Find the minimum value of A.
e Show that your value of A is a minimum.
2

The diagram shows a closed plastic cylinder used for making compost. The radius of the base and the height of the cylinder are $r \mathrm{~cm}$ and $h \mathrm{~cm}$ respectively and the surface area of the cylinder is $30000 \mathrm{~cm}^{2}$.
a Show that the volume of the cylinder, $V \mathrm{~cm}^{3}$, is given by

$$
V=15000 r-\pi r^{3} .
$$

b Find the maximum volume of the cylinder and show that your value is a maximum.
3

The diagram shows a square prism of length $l \mathrm{~cm}$ and cross-section $x \mathrm{~cm}$ by $x \mathrm{~cm}$.
Given that the surface area of the prism is $k \mathrm{~cm}^{2}$, where k is a constant,
a show that $l=\frac{k-2 x^{2}}{4 x}$,
b use calculus to prove that the maximum volume of the prism occurs when it is a cube.

