C2 Algebra

1
$\mathrm{f}(x) \equiv x^{3}-5 x^{2}+a x+b$.
Given that $(x+2)$ and $(x-3)$ are factors of $\mathrm{f}(x)$,
a show that $a=-2$ and find the value of b.
b Hence, express $\mathrm{f}(x)$ as the product of three linear factors.

2

3

$$
\mathrm{f}(x) \equiv 8 x^{3}-x^{2}+7
$$

The remainder when $\mathrm{f}(x)$ is divided by $(x-k)$ is eight times the remainder when $\mathrm{f}(x)$ is divided by $(2 x-k)$.
Find the two possible values of the constant k.

$$
\mathrm{f}(x) \equiv 3 x^{3}-x^{2}-12 x+4
$$

a Show that $(x-2)$ is a factor of $\mathrm{f}(x)$.
b Solve the equation $\mathrm{f}(x)=0$.

The diagram shows the curve with the equation $y=6+7 x-x^{3}$.
Find the coordinates of the points where the curve crosses the x-axis.

$$
\mathrm{f}(x) \equiv 3 x^{3}+p x^{2}+8 x+q
$$

When $\mathrm{f}(x)$ is divided by $(x+1)$ there is a remainder of -4 .
When $\mathrm{f}(x)$ is divided by $(x-2)$ there is a remainder of 80 .
a Find the values of the constants p and q.
b Show that $(x+2)$ is a factor of $\mathrm{f}(x)$.
c Solve the equation $\mathrm{f}(x)=0$.
6 a Solve the equation

$$
x^{3}-4 x^{2}-7 x+10=0
$$

b Hence, solve the equation

$$
y^{6}-4 y^{4}-7 y^{2}+10=0 .
$$

7

$$
\mathrm{f}(n) \equiv n^{3}+7 n^{2}+14 n+3
$$

a Find the remainder when $\mathrm{f}(n)$ is divided by $(n+1)$.
b Express $\mathrm{f}(n)$ in the form

$$
\mathrm{f}(n) \equiv(n+1)(n+a)(n+b)+c
$$

where a, b and c are integers.
c Hence, show that $\mathrm{f}(n)$ is odd for all positive integer values of n.

