1 Find the quotient obtained in dividing

a
$$(x^3 + 2x^2 - x - 2)$$
 by $(x + 1)$

b
$$(x^3 + 2x^2 - 9x + 2)$$
 by $(x - 2)$

c
$$(20 + x + 3x^2 + x^3)$$
 by $(x + 4)$

d
$$(2x^3 - x^2 - 4x + 3)$$
 by $(x - 1)$

e
$$(6x^3 - 19x^2 - 73x + 90)$$
 by $(x - 5)$

d
$$(2x^3 - x^2 - 4x + 3)$$
 by $(x - 1)$
f $(-x^3 + 5x^2 + 10x - 8)$ by $(x + 2)$

$$g(x^3-2x+21)$$
 by $(x+3)$

h
$$(3x^3 + 16x^2 + 72)$$
 by $(x+6)$

Find the quotient and remainder obtained in dividing 2

a
$$(x^3 + 8x^2 + 17x + 16)$$
 by $(x + 5)$

b
$$(x^3 - 15x^2 + 61x - 48)$$
 by $(x - 7)$

c
$$(3x^3 + 4x^2 + 7)$$
 by $(2 + x)$

d
$$(-x^3 - 5x^2 + 15x - 50)$$
 by $(x + 8)$

e
$$(4x^3 + 2x^2 - 16x + 3)$$
 by $(x - 3)$

$$\mathbf{f}$$
 $(1-22x^2-6x^3)$ by $(x+2)$

3 Use the factor theorem to determine whether or not

a
$$(x-1)$$
 is a factor of $(x^3 + 2x^2 - 2x - 1)$

b
$$(x+2)$$
 is a factor of $(x^3 - 5x^2 - 9x + 2)$

c
$$(x-3)$$
 is a factor of $(x^3 - x^2 - 14x + 27)$

a
$$(x-1)$$
 is a factor of $(x^3 + 2x^2 - 2x - 1)$ **b** $(x+2)$ is a factor of $(x^3 - 5x^2 - 9x + 2)$ **c** $(x-3)$ is a factor of $(x^3 - x^2 - 14x + 27)$ **d** $(x+6)$ is a factor of $(2x^3 + 13x^2 + 2x - 24)$

e
$$(2x + 1)$$
 is a factor of $(2x^3 - 5x^2 + 7x - 14)$

e
$$(2x+1)$$
 is a factor of $(2x^3-5x^2+7x-14)$ f $(3x-2)$ is a factor of $(2-17x+25x^2-6x^3)$

4
$$f(x) \equiv x^3 - 2x^2 - 11x + 12$$
.

a Show that
$$(x - 1)$$
 is a factor of $f(x)$.

b Hence, express f(x) as the product of three linear factors.

5
$$g(x) \equiv 2x^3 + x^2 - 13x + 6$$
.

Show that (x + 3) is a factor of g(x) and solve the equation g(x) = 0.

6
$$f(x) = 6x^3 - 7x^2 - 71x + 12$$
.

Given that f(4) = 0, find all solutions to the equation f(x) = 0.

7
$$g(x) \equiv x^3 + 7x^2 + 7x - 6$$
.

Given that x = -2 is a solution to the equation g(x) = 0,

- a express g(x) as the product of a linear factor and a quadratic factor,
- **b** find, to 2 decimal places, the other two solutions to the equation g(x) = 0.

8
$$f(x) \equiv x^3 + 2x^2 - 11x - 12$$
.

- **a** Evaluate f(1), f(2), f(-1) and f(-2).
- **b** Hence, state a linear factor of f(x) and fully factorise f(x).

By first finding a linear factor, fully factorise 9

a
$$x^3 - 2x^2 - 5x + 6$$

b
$$x^3 + x^2 - 5x - 2$$

c
$$20 + 11x - 8x^2 + x^3$$

d
$$3x^3 - 4x^2 - 35x + 12$$
 e $x^3 + 8$

$$a v^3 + 9$$

$$\mathbf{f}$$
 12 + 29x + 8x² - 4x³

10 Solve each equation, giving your answers in exact form.

$$x^3 - x^2 - 10x - 8 = 0$$

a
$$x^3 - x^2 - 10x - 8 = 0$$
 b $x^3 + 2x^2 - 9x - 18 = 0$ **c** $4x^3 - 12x^2 + 9x = 2$

$$4x^3 - 12x^2 + 9x = 2$$

d
$$x^3 - 5x^2 + 3x + 1 = 0$$

$$e^{-x^2(x+4)} = 3(3x+2)$$

$$\mathbf{f} \quad x^3 - 14x + 15 = 0$$

 $f(x) \equiv 2x^3 - x^2 - 15x + c$. 11

Given that (x-2) is a factor of f(x),

a find the value of the constant c,

b fully factorise f(x).

 $g(x) \equiv x^3 + px^2 - 13x + q$. 12

Given that (x + 1) and (x - 3) are factors of g(x),

a show that p = 3 and find the value of q,

b solve the equation g(x) = 0.

Use the remainder theorem to find the remainder obtained in dividing 13

a
$$(x^3 + 4x^2 - x + 6)$$
 by $(x - 2)$

b
$$(x^3 - 2x^2 + 7x + 1)$$
 by $(x + 1)$

c
$$(2x^3 + x^2 - 9x + 17)$$
 by $(x + 5)$

d
$$(8x^3 + 4x^2 - 6x - 3)$$
 by $(2x - 1)$

c
$$(2x^3 + x^2 - 9x + 17)$$
 by $(x + 5)$ **d** $(8x^3 + 4x^2 - 6x - 3)$ by $(2x - 1)$
e $(2x^3 - 3x^2 - 20x - 7)$ by $(2x + 1)$ **f** $(3x^3 - 6x^2 + 2x - 7)$ by $(3x - 2)$

$$f(3x^3-6x^2+2x-7)$$
 by $(3x-2)$

Given that when $(x^3 - 4x^2 + 5x + c)$ is divided by (x - 2) the remainder is 5, find the value of the 14 constant c.

Given that when $(2x^3 - 9x^2 + kx + 5)$ is divided by (2x - 1) the remainder is -2, find the value of 15 the constant k.

Given that when $(2x^3 + ax^2 + 13)$ is divided by (x + 3) the remainder is 22, 16

a find the value of the constant a,

b find the remainder when $(2x^3 + ax^2 + 13)$ is divided by (x - 4).

17
$$f(x) = px^3 + qx^2 + qx + 3.$$

Given that (x + 1) is a factor of f(x),

a find the value of the constant p.

Given also that when f(x) is divided by (x - 2) the remainder is 15,

b find the value of the constant q.

 $p(x) \equiv x^3 + ax^2 + 9x + b$. 18

Given that (x - 3) is a factor of p(x),

a find a linear relationship between the constants a and b.

Given also that when p(x) is divided by (x + 2) the remainder is -30,

b find the values of the constants a and b.

 $f(x) \equiv 4x^3 - 6x^2 + mx + n$. 19

> Given that when f(x) is divided by (x + 1) the remainder is 3 and that when f(x) is divided by (2x - 1) the remainder is 15, find the values of the constants m and n.

 $g(x) \equiv x^3 + cx + 3$. 20

Given that when g(x) is divided by (x - 4) the remainder is 39,

a find the value of the constant c,

b find the quotient and remainder when g(x) is divided by (x + 2).