Name:	
Name.	

GCSE (1 - 9)

Similar Shapes (Area and Volume)

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1.

Diagram NOT accurately drawn

Two solid shapes, A and B, are mathematically similar.

The base of shape A is a circle with radius 4 cm.

The base of shape B is a circle with radius 8 cm.

The surface area of shape A is 80 cm^2 .

(a) Work out the surface area of shape B.

Cength scale factor 2 :. area scale factor
$$2^2 = 4$$
 $320 cm^2$ (2)

The volume of shape B is $600 cm^3$.

(b) Work out the volume of shape A.

$$\frac{600}{8} = \frac{300}{4} = \frac{150}{2}$$

$$...75....cm^{3}$$
 (2)

2.

The two cylinders, A and B, are mathematically similar. The height of cylinder B is twice the height of cylinder A. The total surface area of cylinder A is 180 cm^2 .

Calculate the total surface area of cylinder B.

The diagram represents a large cone of height 6 cm and base diameter 18 cm.

The large cone is made by placing a small cone A of height 2 cm and base diameter 6 cm on top of a frustum B.

Calculate the volume of the frustum B. Give your answer in terms of \prec .

volume of big cone =
$$\frac{1}{3}\pi r^2 h$$

= $\frac{1}{3}\pi (9)^2 \cdot 6$
= 162π
volume of Small cone = $\frac{162\pi}{27} = 6\pi$

Cylinder A and cylinder B are mathematically similar. The length of cylinder A is 4 cm and the length of cylinder B is 6 cm. The volume of cylinder A is $80 \ cm^3$. Calculate the volume of cylinder B.

l'englin scale factor
$$\frac{3}{2}$$
 area scale factor $(\frac{3}{2})^2 = \frac{9}{8}$ volume scale factor $(\frac{3}{2})^3 = \frac{27}{8}$

$$80 \times \frac{27}{8} = 270$$
 $\frac{270}{8}$ cm³ (3)

5. X and Y are two geometrically similar solid shapes.

The total surface area of shape X is 450 cm². The total surface area of shape Y is 800 cm².

The volume of shape X is 1350 cm³.

Calculate the volume of shape Y.

Scale factor for area =
$$\frac{800}{450} = \frac{16}{9}$$

Scale factor for length = $\sqrt{\frac{16}{9}} = \frac{4}{3}$
Scale factor for volume: $(\frac{4}{3})^3 = \frac{64}{27}$

$$3200 \text{ cm}^3$$
 (3)

Diagram NOT accurately drawn

Two cylinders, P and Q, are mathematically similar.

The total surface area of cylinder P is $90 \prec \text{cm}^2$. The total surface area of cylinder Q is $810 \prec \text{cm}^2$.

The length of cylinder P is 4 cm.

area scale factor = $\frac{810}{90}$ = 9 Length scale factor = $\sqrt{9}$ = 3

(a) Work out the length of cylinder Q.

....2....cm (3)

The volume of cylinder P is $100 \prec \text{ cm}^3$.

(b) Work out the volume of cylinder Q. Give your answer as a multiple of \prec .

100 T × 27

2700T cm³ (2)

7.

Two cones, P and Q, are mathematically similar.

The total surface area of cone P is 24 cm². The total surface area of cone Q is 96 cm².

The height of cone P is 4 cm.

(a) Work out the height of cone Q.

The volume of cone P is 12cm³

(b) Work out the volume of cone Q.

Volume scale factor =
$$2^3 = 8$$

$$12 \times 8 = 96$$

$$....$$
 $\frac{96}{cm^3}$ (2)