Write your name here

Surname

Other Names

Mathematics

2019 Practice Paper Paper 3 (Calculator) Higher Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name,

centre number and candidate number.

- Answer **all** questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

mathsgenie.co.uk

1 $\mathscr{C} = \{\text{even numbers between 1 and 31}\}\$ $A = \{2, 4, 8, 14, 18, 22, 28\}\$ $B = \{8, 10, 16, 18, 22, 30\}$

(a) Complete the Venn diagram to represent this information.

A number is chosen at random from the universal set, $\mathscr E$

(b) What is the probability that the number is in the set $A \cup B$?

(2) (Total for question 1 is 6 marks)

.....%

(1)

2 The frequency table shows the time taken for 100 people to travel to an event.

3 (a) Find the reciprocal of 8	
	•••••
(1)	
(b) Use your calculator to work out $(2 \cos 40^\circ + 3 \sin 25^\circ)^3$ Write down all the figures on your calculator display.	
The down an and ngales on your encountry cospilay.	
(2)	
(Total for question 3 is 3 mark	5)
4 Solve the simultaneous equations	
2x + 5y = 2 7x - 4y = -1	
7x - 4y1	
$x = \dots$	
<i>y</i> =	
(Total for question 4 is 3 marks	
	<u>, </u>

5	A is the point with coordinates $(3, 8)$ B is the point with coordinates $(x, 13)$	
	The gradient of AB is 2.5 Work out the value of x	
		(Total for question 5 is 2 marks)
6	(a) Olivia is going to invest some money for 5 years.	
	She can choose from two options:	
	Investment A: 2.7% compound interest per annum	
	Investment B: 2.8% simple interest per annum	
	Which investment should Olivia choose You must show your working.	
		(Total for question 6 is 4 marks)

7 The exchange rate in London is $\pounds 1 = \$1.31$

The exchange rate in New York is 1 = £0.79

Bernie wants to change some pounds into dollars.

In which of these cities would Bernie get the most dollars? You must show your working.

(Total for question 7 is 3 marks)

(
8	Each year Rose buys an annual ticket for his train journey to work.
	The price of Rose's ticket increased by 2% in 2017 and 3% in 2018.
	The ticket cost £2534 in 2018.
	What was the price of the ticket in 2016?
	£
	(Total for question 8 is 3 marks)
9	Last year Patrick paid £2534 for his annual train ticket. This year he has to pay £2612 for his annual train ticket. Work out the percentage increase in the cost of his train ticket. Give your answer correct to 3 significant figures.

11 Liquid **A** has a density of 1.2 g/cm^3

150 cm³ of Liquid A is mixed with some of Liquid B to make Liquid C.

Liquid C has a mass of 210 g and a density of 1.12 g/cm³

Find the density of Liquid **B**.

.....g/cm³

(Total for question 11 is 3 marks)

12 Emma has a bag containing a large number of beads. She wants to find an estimate for the number of beads in the bag.

Emma takes a sample of 50 beads from the bag. She marks each bead with a black cross and then puts the beads back in the bag.

Emma shakes the bag. She now takes another sample of 50 beads from the bag.

6 of these beads have been marked with a black cross.

Work out an estimate for the total number of beads in the bag.

(Total for question 12 is 2 marks)

13 A radioactive substance decays by x % each day. After 8 days half of the substance has decayed. Find the value of x. Give your answer to 1 decimal place.

(Total for question 13 is 3 marks)

		$\mathbf{F} = 1 + 1 + 1 + 1 + 2 + 2 + 2 + 1 + $	
14	(a)	Expand and simplify $(x+5)(x+3)(x-4)$	
			(3)
	(b)	Solve $3x^2 - 5x - 7 = 0$ Give your solutions correct to 3 significant figure	es
			(3)
			(Total for question 14 is 6 marks)

Prove algebraically that the recurring decimal 0.315 can be written as $\frac{35}{111}$ (Total for question 16 is 2 mark Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence. (Total for question 17 is 3 mark)						_	
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.	Prove algel	oraically that the	recurring decir	nal 0.315 can b	be written as $\frac{3}{11}$	$\frac{5}{1}$	
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Here are the first 5 terms of a quadratic sequence. 5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.					·		
5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.					(Tot	al for question 1	6 is 2 marl
5 11 22 38 59 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.							
Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.	Here are the	ne first 5 terms of	f a quadratic se	quence.			
Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.		5	11	22	38	50	
		5	11		50	59	
	Find an ex	pression, in term	is of n , for the r	<i>i</i> th term of this	sequence.		
/TE-4-1 E							
······································							
······································							
/T-4-1 f							

18 The table shows information about the weight of 60 pigs.

Weight (kg)	Frequency
$\boxed{60 < w \leqslant 75}$	9
$75 < w \leqslant 85$	16
$85 < w \leqslant 90$	25
$90 < w \leqslant 110$	10

(a) On the grid, draw a histogram for the information in the table.

20 (a) Show that the equation $x^3 - 4x^2 + 1 = 0$ has a solution between x = 3 and x = 4

(b) Show that the equation $x^3 - 4x^2 + 1 = 0$ can be rearranged to give: $x = \sqrt[3]{4x^2 - 1}$

(c) Starting with $x_0 = 4$, use the iteration formula $x_{n+1} = \sqrt[3]{4x_n^2 - 1}$ to find the value of x_2

Give your answer to 3 decimal places.

(3)

(2)

(1)

(Total for question 20 is 6 marks)

21
$$f = \frac{\sqrt{g}}{h}$$
 $g = 12.5$ correct to 3 significant figures
 $h = 15.02$ correct to 4 significant figures

By considering bounds, work out the value of f to a suitable degree of accuracy. Give a reason for your answer.

(Total for question 21 is 5 marks)

.....

