Mathematics

2018 Practice Paper
Paper 2 (Calculator)
Higher Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.

- You must show all your working.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

1 There are only red counters, blue counters, yellow counters and black counters in a bag.
The table shows the probabilities of picking at random a red counter and picking at random a black counter.

Colour	red	blue	yellow	black
Probability	0.22			0.34

The probability of picking a blue counter is twice the probability of picking a yellow counter.
Find the probability of picking a blue counter.

2 A number y is rounded to 1 decimal place.
The result is 5.8
Write down the error interval for y.

3 It takes 5 machines 6 hours to produce 1000 DVDs
Work out how long it would take 4 machines to produce 1000 DVDs.

4 A sphere is carved from a block of wood. The sphere has a radius of 5 cm .

The density of the wood is $0.85 \mathrm{~g} / \mathrm{cm}^{3}$
Find the mass of the sphere.
Give your answer to 3 significant figures.

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

. g

5 An artist is making orange paint by mixing red paint ($x \mathrm{ml}$) and yellow paint $(y \mathrm{ml})$ in the ratio 8:11
(a) Use this information to draw a graph showing the relationship between the amount of red paint and the amount of yellow paint used.

(b) The artist decides to use 50 ml of yellow paint. Use your graph to work out how much red paint he should use.
\qquad

Work out the value of x.
Give your answer to 1 decimal place.

The diagram shows a parallelogram
All of the angles are in degrees.
Find the value x and the value of y.

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

8 Solve the simultaneous equations

$$
\begin{aligned}
2 x-3 y & =4 \\
4 x-y & =13
\end{aligned}
$$

$$
\begin{aligned}
& x=. \\
& y=.
\end{aligned}
$$

9 Here is the graph of $y=x^{2}-2 x-2$

(a) Write down estimates for the roots of $x^{2}-2 x-2=0$
\qquad
(b) Write down the coordinates of the turning point of $\mathrm{y}=x^{2}-2 x-2$
\qquad

ABCDE is a regular pentagon.
BCF and EDF are straight lines.
Work out the size of angle CFD.
You must show how you got your answer.

11 Prove algebraically that the recurring decimal $0.6 \dot{8} \dot{1}$ can be written as $\frac{15}{22}$

12 There are 12 boys and 15 girls in a class.
One boy and one girl will be selected to represent the class on the student council.
Work out the total number of ways of choosing a boy and a girl.

13 The frequency table shows the speeds of 100 cars.

Speed (km/h)	Frequency
$0<\mathrm{s} \leqslant 20$	6
$20<\mathrm{s} \leqslant 40$	17
$40<\mathrm{s} \leqslant 60$	29
$60<\mathrm{s} \leqslant 80$	25
$80<\mathrm{s} \leqslant 100$	20
$100<\mathrm{s} \leqslant 120$	3

(a) On the grid, plot a cumulative frequency graph for this information.

(b) Find an estimate for the number of cars travelling over $90 \mathrm{~km} / \mathrm{h}$.

14 Using $x_{n+1}=\frac{5}{x_{n}^{2}+3}$
With $x_{0}=1$
Find the values of x_{1}, x_{2} and x_{3}.

$$
\begin{aligned}
& x_{1}=\ldots . ~ \\
& x_{2}=\ldots \ldots . ~
\end{aligned}
$$

15 Charlie invests $£ 2500$ for 3 years in a savings account.
She gets 3% per annum compound interest in the first year, then $x \%$ for 2 years.
Charlie has $£ 2705.36$ at the end of 3 years, work out the value of x.
$16 \quad f=\frac{\sqrt{g}}{h}$
$f=9.15$ correct to 3 significant figures $g=22.06$ correct to 4 significant figures

By considering bounds, work out the value of \boldsymbol{h} to a suitable degree of accuracy. Give a reason for your answer.

17 For all values of x

$$
\mathrm{f}(x)=5 x-2 \quad \text { and } \quad \mathrm{g}(x)=x^{2}+2
$$

(a) Find f(3)
(b) Find $\mathrm{fg}(x)$
(c) Solve $\mathrm{fg}(x)=\operatorname{gf}(x)$

Give your answers to 2 decimal places.

18 The table shows information about the speed, in mph, of 120 cars.

Speed (mph)	Frequency
$40<\mathrm{s} \leqslant 55$	6
$55<\mathrm{s} \leqslant 60$	10
$60<\mathrm{s} \leqslant 65$	46
$65<\mathrm{s} \leqslant 75$	48
$75<\mathrm{s} \leqslant 90$	6

(a) On the grid, draw a histogram for the information in the table.

(b) Work out an estimate for the number of cars over 70 mph .
\qquad

19 Here are the first 5 terms of a quadratic sequence.

$$
\begin{array}{lllll}
4 & 8 & 15 & 25 & 38
\end{array}
$$

Find an expression, in terms of n, for the nth term of this sequence.

20 Here is a speed-time graph.

(a) Use 3 strips of equal width to find an estimate for the area under the graph for the first 3 seconds.
\qquad
(b) Describe what your answer to part a represents.
\qquad
\qquad

21

Work out the perimeter of triangle $A B C$.
Give your answer to 3 significant figures.
\qquad

22

$\overrightarrow{O A}=5 \mathrm{a}$
$\overrightarrow{O B}=3 \mathrm{~b}$
C is the point on OA such that $\mathrm{OC}: \mathrm{CA}=4: 1$
M is the midpoint of $A B$
D is the point such that $O B: O D=3: 4$
Show that C, M and D are on the same straight line.

23 There are some red counters and some blue counters in a bag.
The ratio of red counters to blue counters is $4: 1$.
Two counters are removed at random.
The probability that both the counters taken are red is $\frac{22}{35}$
Work how many blue counters are in the bag.

