Name:

Maths Genie Stage 14

Test D

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided

- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- Calculators may be used.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

$\overrightarrow{O A}=3 a$
$\overrightarrow{O B}=4 b$
P is the point on AB such that $\mathrm{AP}: \mathrm{PB}=1: 4$
$\overrightarrow{O P}=k(3 \boldsymbol{a}+\boldsymbol{b})$
Find the value of k

2 The graph of $y=\mathrm{f}(x)$ is shown on the grid.

(a) On the grid above, sketch the graph of $\mathrm{y}=\mathrm{f}(x)-2$

The graph of $\mathrm{y}=\mathrm{f}(x)$ has a turning point at $(1,-2)$.
(b) Write down the coordinates of the turning point of $y=-\mathrm{f}(x+3)$

3

$A B$ and $C D$ are parallel and equal in length.
Prove that triangle $A B E$ and triangle $C D E$ are congruent.

4 Work out the integer values that satisfy: $\quad 2 x^{2}-10 x+3<0$

5 Solve the simultaneous equations

$$
\begin{aligned}
x^{2}+y^{2} & =29 \\
y & =2 x-1
\end{aligned}
$$

6 Here is a speed-time graph.

Use 5 strips of equal width to find an estimate for the distance travelled in 10 seconds.

A, B and C are points on the circumference of a circle, centre O. $A O C$ is a diameter of the circle.

Prove that angle $A B C$ is 90°
You must not use any circle theorems in your proof.
$8 \quad$ A circle has the equation $x^{2}+y^{2}=17$
(a) Write down the coordinates of the centre of the circle.
P is the point $(1,-4)$ on the circle $x^{2}+y^{2}=17$
(b) Work out the equation of the tangent to the circle at P.

9 There are n counters in a bag.
5 of the counters are red and the rest are blue.
Ross takes a counter from the bag at random and does not replace it.
He then takes another counter at random from the bag.
The probability that Ross takes two blue counters is $\frac{3}{7}$
Find the value of n.

