Name:

Maths Genie Stage 14

Test C

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided

- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- Calculators may be used.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 The graph of $\mathrm{y}=\mathrm{f}(x)$ is shown below.

The coordinates of the maximum point of this curve are $(1,6)$.
Write down the coordinates of the maximum point of the curve with equation
(a) $y=\mathrm{f}(x+4)$
\qquad
(b) $y=-\mathrm{f}(x)$
\qquad
(c) $y=\mathrm{f}(x)+2$

2 Solve $x^{2}-2 x+24 \geq 0$

3 Here is a speed-time graph for a train journey between 2 stations.

The train travelled 2.5 km in T seconds.
Work out the value of T.
$4 \quad$ The point A has the coordinates $(9,2)$
The point B has the coordinates $(3,4)$

Find the equation of the perpendicular bisector to $A B$.
$5 \quad A B C$ is a triangle.

$C D E F$ is a parallelogram such that:
D is the midpoint of $A C$
E is the midpoint of $A B$
F is the midpoint of $B C$
Prove that triangle $A D E$ is congruent to triangle $B E F$.

6 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& x^{2}-2 y^{2}=17 \\
& 3 x+2 y=13
\end{aligned}
$$

7 The diagram shows a parallelogram.

$\overrightarrow{O A}=5 a$
$\overrightarrow{O B}=3 b$
D is the point on OC such that $\mathrm{OD}: \mathrm{DC}=2: 1$
E is the midpoint of $B C$
Show that A, D and E are on the same straight line.

A, B and C are points on the circumference of a circle, centre O.
$D C E$ is a tangent to the circle.
Prove that angle $B C E$ and angle $B A C$ are equal.

9 There are some red counters and some blue counters in a bag.
The ratio of red counters to blue counters is $3: 1$
Two counters are removed at random.
The probability that both the counters taken are blue is $\frac{2}{35}$
Work how many counters were in the bag before any counters were removed.

