Name:

Maths Genie Stage 14

Test A

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided

- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- Calculators may be used.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 The graph of $\mathrm{y}=\mathrm{f}(x)$ is shown below.

The coordinates of the minimum point of this curve are $(3,-2)$.
Write down the coordinates of the minimum point of the curve with equation
(a) $y=\mathrm{f}(x+3)$
(b) $y=-\mathrm{f}(x)$
(c) $y=\mathrm{f}(-x)$

2 The point A has the coordinates (2,4)
The point B has the coordinates $(6,10)$
Find the equation of the perpendicular bisector to $A B$.

3 Solve $x^{2}-9 x+14 \leq 0$
$4 \quad A B C D$ is a parallelogram
E is the point where the diagonals $A D$ and $B C$ meet.

Prove that triangle $A B E$ is congruent to triangle $C D E$.

5 Here is a speed-time graph.

Use 5 strips of equal width to find an estimate for the distance travelled in 5 seconds.

6 Solve the simultaneous equations

$$
\begin{aligned}
x^{2}+y^{2} & =17 \\
y & =3 x-1
\end{aligned}
$$

7 There are some red counters and some blue counters in a bag.
The ratio of red counters to blue counters is 3:2
Two counters are removed at random.
The probability that both the counters taken are red is $\frac{6}{17}$
Work how many blue counters are in the bag.

8

$\overrightarrow{O A}=a$
$\overrightarrow{O B}=b$
C is the point on $O A$ such that $O C: C A=4: 1$
M is the midpoint of $A B$
Given that C, M and D are on the same straight line find $O B: B D$

A, B and C are points on the circumference of a circle, centre O. $A O C$ is a diameter of the circle.

Prove that angle $A B C$ is 90°
You must not use any circle theorems in your proof.

