## Maths Genie Stage 12

# Test B

#### Instructions

- Use **black** ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- Calculators may be used.

#### Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

#### Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end



| 1 | David has 25 different cards                                                                    |
|---|-------------------------------------------------------------------------------------------------|
| T | David has 25 different cards.<br>David is going to give one card to Dean and one card to Edwin. |
|   | How many different ways are there of doing this?                                                |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
| _ | (Total for Question 1 is 2 marks)                                                               |
| 2 | Solve $5x^2 + x - 13 = 0$                                                                       |
|   | Give your solutions correct to 3 significant figures.                                           |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
| _ | (Total for Question 2 is 3 marks)                                                               |
| 3 | The number of rabbits in a field is increasing by $x\%$ each year.                              |
|   | The nonulation is expected to double in 7 years, work out the value of r                        |
|   | Give your answer to 1 decimal place.                                                            |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   | 0/                                                                                              |
|   | (Total for Augstian 2 is 2 marks)                                                               |
|   | (Total for Question 5 is 5 marks)                                                               |

| directly proportion<br>a = 9, b = 45<br>the value of <i>b</i> w | onal to <i>b</i>                          |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| n $a = 9, b = 45$<br>the value of $b$ w                         |                                           |                                                                |                                                                                                        | <i>a</i> is directly proportional to <i>b</i>                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
| the value of $b$ w                                              | When $a = 9, b = 45$                      |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 | Find the value of <i>b</i> when $a = 6.5$ |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           | <i>b</i> =                                                                                                                                             | • • • •                                                                                                                                                                                                    |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        | (Tota                                                                                                                                     | al for Question 4                                                                                                                                      | is 3 marks                                                                                                                                                                                                 |  |  |  |  |
| 5 Here are the first 5 terms of a quadratic sequence.           |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 | 5                                         | 7                                                              | 11                                                                                                     | 17                                                                                                                                        | 25                                                                                                                                                     |                                                                                                                                                                                                            |  |  |  |  |
| Find an expres                                                  | ssion. in terr                            | ms of <i>n</i> , for tl                                        | he <i>n</i> th term of t                                                                               | his sequence.                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
| i ind an expres                                                 | sion, in ten                              | 115 01 <i>n</i> , 101 u                                        |                                                                                                        | ins sequence.                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        |                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                            |  |  |  |  |
|                                                                 |                                           |                                                                |                                                                                                        | <br>(Tota)                                                                                                                                | for Question 5 i                                                                                                                                       | s 4 marks                                                                                                                                                                                                  |  |  |  |  |
|                                                                 | Here are the fi<br>Find an expres         | Here are the first 5 terms of 5<br>Find an expression, in term | Here are the first 5 terms of a quadratic<br>5 7<br>Find an expression, in terms of <i>n</i> , for the | Here are the first 5 terms of a quadratic sequence.<br>5 7 11<br>Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of t | (Total   Here are the first 5 terms of a quadratic sequence. $5$ 7 11 17   Find an expression, in terms of $n$ , for the $n$ th term of this sequence. | $b = \dots \dots \dots$ (Total for Question 4   Here are the first 5 terms of a quadratic sequence.   5 7 11 17 25   Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence. |  |  |  |  |



9

### (Total for Question 8 is 2 marks)



A, B, C and D are points on the circumference of a circle, centre O.

Angle  $AOC = 126^{\circ}$ Angle  $ADC = x^{\circ}$ 

Work out the value of *x*. You must show all your working.

0

(Total for Question 9 is 3 marks)

.....



The two cones, A and B, are mathematically similar.

Cone A has a volume of  $1250\pi$  cm<sup>3</sup> Cone B has a volume of  $5120\pi$  cm<sup>3</sup>

The total surface area of cone A is  $825 \text{ cm}^2$ 

Calculate the total surface area of cone B.

.....

 $\mathrm{cm}^2$