1 Simplify fully $\frac{2 x+6}{x-3} \div \frac{2 x^{2}+7 x+3}{x^{2}-9}$

3 Given that $\mathrm{g}(x)=\frac{2 x+6}{5}$
Work out an expression for $\mathrm{g}^{-1}(x)$

5 Using $x_{n+1}=\frac{10}{x_{n}^{2}+4}$
With $x_{0}=1$
Find the values of x_{1}, x_{2} and x_{3}.

7

$$
f=\frac{\sqrt{g}}{h}
$$

$g=22$ correct to 2 significant figures
$h=9.2$ correct to 1 decimal place
Work out the upper bound for f.
Give your answer to 2 decimal places.

9 The point A has the coordinates $(2,7)$
The point B has the coordinates $(8,4)$
Find the equation of the perpendicular bisector to $A B$.

2

Work out the value of x.
Give your answer to 1 decimal place.

4 Show that $\frac{1}{\frac{1}{\sqrt{3}}+\sqrt{3}}$ can be written as $\frac{\sqrt{3}}{4}$
$6 y$ is inversely proportional to the cube of x
When $y=0.5, x=2$
Find the value of y when $x=4$

8

Calculate the total distance travelled.

10 The coordinates of the turning point of a curve are $(-4,2)$

Write down the coordinates of the turning point of the curve with equation $y=-\mathrm{f}(x)$

11 Prove algebraically that the sum of any three consecutive even integers is always a multiple of 6 .

12 There are 12 counters in a bag.
5 of the counters are red.
4 of the counters are blue.
3 of the counters are green.
Billie takes two counters are taken at random from the bag.

Work out the probability that both of the counters Billie takes are different colours.

14 Solve the simultaneous equations:

$$
\begin{gathered}
x^{2}+y^{2}=16 \\
2 x+y=8
\end{gathered}
$$

15 By completing the square, find the turning point of the graph with equation $y=x^{2}-x+10$

17 Cylinder A and Cylinder B are
mathematically similar.
The surface area of Cylinder A is $50 \mathrm{~cm}^{2}$ and the surface area of Cylinder B is $128 \mathrm{~cm}^{2}$.

The height of Cylinder A is 7 cm .
Calculate the height of Cylinder B.

19 Here are the first 5 terms of a quadratic sequence.

$$
\begin{array}{lllll}
3 & 5 & 8 & 12 & 17
\end{array}
$$

Find an expression, in terms of n, for the nth term of this sequence.

16
Prove algebraically that the recurring decimal 0.2 i 8 can be written as $\frac{12}{55}$
$18 A B$ and $C D$ are parallel and equal in length.

Prove that triangle $A B E$ and triangle $C D E$ are congruent.

20

Sketch the graph of $y=\tan x^{\circ}$ for $0 \leq x \leq 360$

