Higher (Grade 7-9) GCSE Mini Test 3	
1 Simplify fully $\frac{3x+6}{x} \div \frac{3x^2+2x-8}{x^2-2x}$	2 B 26 m 98° 15 m
$\frac{3(x - 2)}{3x - 4}$	<i>A</i> Work out the length of <i>AC</i> . Give your answer to 3 significant figures. 31.8 m
3 Given that $f(x) = 3x + 1$ and $g(x) = x^2 - 5$ Find fg(3)	4 Simplify fully $\frac{(5+2\sqrt{3})(5-2\sqrt{3})}{\sqrt{3}}$
13	You must show all your working. $\frac{13\sqrt{3}}{3}$
5 Using $x_{n+1} = 3 + \frac{8}{x_n^2}$ With $x_0 = 3$ Find the values of x_1, x_2 and x_3 . $x_1 = 3.8$ $x_2 = 3.528979592$ $x_3 = 3.64237953$	6 <i>a</i> is directly proportional to <i>b</i> When $a = 10, b = 8$ Find the value of <i>b</i> when $a = 14$ 11.2
7 $a = \frac{b}{c}$ b = 23.65 correct to 2 decimal places c = 5.7 correct to 1 decimal place Work out the upper bound for <i>a</i> . Give your answer to 2 decimal places. 4.19	8 Speed (m/s) 0 4 22 Time (seconds) The total distance travelled is 200m. Find the value of s. S = 10
9 A straight line, <i>L</i> , passes through the point with coordinates (6,5) and is perpendicular to the line with equation $y = 3x + 1$ Find an equation of the straight line L.	10 The coordinates of the maximum point of a curve are $(-4, 2)$ Write down the coordinates of the maximum point of the curve with equation $y = f(-x)$
$y = -\frac{1}{3}x + 7$	(4,2)

11 <i>n</i> is an integer. Prove algebraically that the sum of (n+2)(n+1) and $n+2$ is always a square number. $n^2 + 3n + 2 + n + 2$ $n^2 + 4n + 4$ $(n+2)(n+2) = (n+2)^2$ 13 Solve $3x^2 - 20x + 12 < 0$ $\frac{2}{3} < X < 6$	12 There are 9 counters in a bag. 5 of the counters are red. 4 of the counters are blue. Two counters are taken at random from the bag. Work out the probability that two red counters are taken. 20 72 14 Solve the simultaneous equations: $x^2 + y^2 = 73$ y = 3x - 1 x = 3 $x = -\frac{12}{5}$ y = 8 $y = -\frac{41}{5}$
15 By completing the square, find the turning point of the graph with equation $y = x^2 + 6x - 1$ (-3, -10)	16 Prove algebraically that the recurring decimal 0.78 can be written as $\frac{26}{33}$ $x = 0.78$ $x = \frac{78}{99}$ $100x = 78.78$ $x = \frac{26}{33}$ 99x = 78
 17 Cone A and Cone B are mathematically similar. The volume of Cone A is 250 cm³ and the volume of Cone B is 16 cm³. The total surface area of Cone B is 12 cm². Calculate the total surface area of Cone A. 75 cm² 	18 ABCD is a parallelogram CAE = BDE Alternate angles are equal ACE = DBE Alternate angles are equal AC = BD Opposite sides in a parallelogram are equal ASA Prove that triangle ACE is congruent to triangle BDE.
19 Here are the first 5 terms of a quadratic sequence. 1 6 17 34 57 Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence. $3n^2 - 4n + 2$	20 Sketch the graph of $y = \sin x^{\circ}$ for $0 \le x \le 360$
mathsgenie.co.uk	