Higher (Grade 7-9) GCSE Mini Test 3	
1 Simplify fully $\frac{3x+6}{x} \div \frac{3x^2+2x-8}{x^2-2x}$	2 26 m A A B 98° 15 m C Work out the length of AC . Give your answer to 3 significant figures.
3 Given that $f(x) = 3x + 1$ and $g(x) = x^2 - 5$	4 Simplify fully $\frac{(5+2\sqrt{3})(5-2\sqrt{3})}{\sqrt{3}}$
Find fg(3)	You must show all your working.
5 Using $x_{n+1} = 3 + \frac{8}{x_n^2}$	6 <i>a</i> is directly proportional to <i>b</i>
With $x_0 = 3$	When $a = 10, b = 8$
Find the values of x_1, x_2 and x_3 .	Find the value of <i>b</i> when $a = 14$
7 $a = \frac{b}{c}$	8 Speed
b = 23.65 correct to 2 decimal places	(m/s) 0 4 22
c = 5.7 correct to 1 decimal place	Time (seconds)
Work out the upper bound for <i>a</i> .	The total distance travelled is 200m.
Give your answer to 2 decimal places.	Find the value of s.
9 A straight line, <i>L</i> , passes through the point with coordinates (6,5) and is perpendicular to the line with equation $y = 3x + 1$	10 The coordinates of the maximum point of a curve are $(-4, 2)$
Find an equation of the straight line L.	Write down the coordinates of the maximum point of the curve with equation $y = f(-x)$

11 <i>n</i> is an integer. Prove algebraically that the sum of $(n+2)(n+1)$ and $n+2$ is always a square number.	 12 There are 9 counters in a bag. 5 of the counters are red. 4 of the counters are blue. Two counters are taken at random from the bag. Work out the probability that two red counters are taken.
13 Solve $3x^2 - 20x + 12 < 0$	14 Solve the simultaneous equations: $x^2 + y^2 = 73$ y = 3x - 1
15 By completing the square, find the turning point of the graph with equation $y = x^2 + 6x - 1$	16 Prove algebraically that the recurring decimal 0.78 can be written as $\frac{26}{33}$
 17 Cone A and Cone B are mathematically similar. The volume of Cone A is 250 cm³ and the volume of Cone B is 16 cm³. The total surface area of Cone B is 12 cm². Calculate the total surface area of Cone A. 	18 ABCD is a parallelogram $A = B = B$ $C = D$ Prove that triangle ACE is congruent to triangle BDE.
 Here are the first 5 terms of a quadratic sequence. 1 6 17 34 57 Find an expression, in terms of <i>n</i>, for the <i>n</i>th term of this sequence. 	20 Sketch the graph of $y = \sin x^\circ$ for $0 \le x \le 360$
mathsgenie.co.uk	