1 Simplify fully $\frac{3 x+6}{x} \div \frac{3 x^{2}+2 x-8}{x^{2}-2 x}$

3 Given that $\mathrm{f}(x)=3 x+1$ and $\mathrm{g}(x)=x^{2}-5$ Find $\mathrm{fg}(3)$

5
Using $\quad x_{n+1}=3+\frac{8}{x_{n}^{2}}$
With $x_{0}=3$
Find the values of x_{1}, x_{2} and x_{3}.
$7 \quad a=\frac{b}{c}$
$b=23.65$ correct to 2 decimal places
$c=5.7$ correct to 1 decimal place
Work out the upper bound for a.
Give your answer to 2 decimal places.

9 A straight line, L, passes through the point with coordinates $(6,5)$ and is perpendicular to the line with equation $y=3 x+1$

Find an equation of the straight line L.

2

Work out the length of $A C$.
Give your answer to 3 significant figures.

4 Simplify fully $\frac{(5+2 \sqrt{3})(5-2 \sqrt{3})}{\sqrt{3}}$
You must show all your working.
$6 a$ is directly proportional to b
When $a=10, b=8$
Find the value of b when $a=14$

8

The total distance travelled is 200 m .
Find the value of s.
10 The coordinates of the maximum point of a curve are $(-4,2)$

Write down the coordinates of the maximum point of the curve with equation $y=\mathrm{f}(-x)$
$11 n$ is an integer.

Prove algebraically that the sum of $(n+2)(n+1)$ and $n+2$ is always a square number.

12 There are 9 counters in a bag.
5 of the counters are red.
4 of the counters are blue.
Two counters are taken at random from the bag.
Work out the probability that two red counters are taken.

14 Solve the simultaneous equations:

$$
\begin{aligned}
x^{2}+y^{2} & =73 \\
y & =3 x-1
\end{aligned}
$$

15 By completing the square, find the turning point of the graph with equation $y=x^{2}+6 x-1$

17 Cone A and Cone B are mathematically similar.
The volume of Cone A is $250 \mathrm{~cm}^{3}$ and the volume of Cone B is $16 \mathrm{~cm}^{3}$.

The total surface area of Cone B is $12 \mathrm{~cm}^{2}$.

Calculate the total surface area of Cone A.

19 Here are the first 5 terms of a quadratic sequence.

$$
\begin{array}{lllll}
1 & 6 & 17 & 34 & 57
\end{array}
$$

Find an expression, in terms of n, for the nth term of this sequence.

16
Prove algebraically that the recurring decimal $0 . \dot{7} \dot{8}$ can be written as $\frac{26}{33}$
$18 A B C D$ is a parallelogram

Prove that triangle $A C E$ is congruent to triangle $B D E$.

20

Sketch the graph of $y=\sin x^{\circ}$ for $0 \leq x \leq 360$

