Sample Paper 2H Question 25

1 A particle moves along a straight line.
The fixed point O lies on this line.
The displacement of the particle from O at time t seconds, $t \geq 0$, is s metres, where

$$
s=t^{3}-5 t^{2}-8 t+3
$$

Find the value of t for which the particle is instantaneously at rest.
(4 marks)

Sample Paper 1H Question 21

2 The curve with equation $\mathrm{y}=8 x^{2}+\frac{2}{x}$ has one stationary point.
Find the co-ordinates of this stationary point.
Show your working clearly.
(5 marks)

June 2018 Paper 2H Question 17

$3 y=x^{3}-2 x^{2}-15 x+5$
(a) Find $\frac{d y}{d x}$
C is the curve with equation $y=x^{3}-2 x^{2}-15 x+5$
(b) Work out the range of values of x for which C has a negative gradient.
(6 marks)

January 2019 Paper 1H Question 12

4 The curve C has equation $y=\frac{1}{3} x^{3}-9 x+1$
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b) Find the range of values of x for which C has a negative gradient.
(5 marks)

May 2019 Paper 1H Question 24

5 A particle P is moving along a straight line that passes through the fixed point O.
The displacement, s metres, of P from O at time t seconds is given by

$$
s=t^{3}-6 t^{2}+5 t-4
$$

Find the value of t for which the acceleration of P is $3 \mathrm{~m} / \mathrm{s}^{2}$
(4 marks)

