Name:

IGCSE
 Vectors (Magnitude)

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

1 Here are two vectors.

$$
\begin{array}{ll}
\overrightarrow{A B}=\binom{6}{-9} & \overrightarrow{C B}=\binom{1}{3} \\
& \overrightarrow{B C}=\binom{-1}{-3}
\end{array}
$$

Find the magnitude of $\overrightarrow{A C}$

$$
\begin{aligned}
\overrightarrow{A C} & =\overrightarrow{A B}+\overrightarrow{B C} \\
& =\binom{6}{-9}+\binom{-1}{-3} \\
& =\binom{5}{-12}
\end{aligned}
$$

$$
\begin{align*}
A C^{2} & =5^{2}+12^{2} C \tag{13}\\
& =\sqrt{5^{2}+12^{2}}
\end{align*}
$$

Sample Paper 2H Question 23

$1 \quad A B C D$ is a parallelogram

$$
\overrightarrow{A B}=\binom{2}{3} \quad \overrightarrow{A C}=\binom{9}{4}
$$

Find the magnitude of $\overrightarrow{B C} \quad \overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$

$$
\overrightarrow{B C}=\overrightarrow{A C}-\overrightarrow{A B}
$$

$$
=\binom{9}{4}-\binom{2}{3}
$$

$$
=\binom{7}{1}
$$

$$
\begin{aligned}
B C^{2} & =1^{2}+7^{2} \\
B C & =\sqrt{1^{2}+7^{2}} \\
& =5 \sqrt{2}
\end{aligned}
$$

January 2019 Paper 2H Question 23

$1 \quad A B C D$ is a trapezium
$\overrightarrow{D C}=3 \overrightarrow{A B}$

$$
\begin{aligned}
\overrightarrow{D A}=\binom{-2}{3} & \overrightarrow{D B}
\end{aligned}=\binom{-1}{7}
$$

Find the exact magnitude of $\overrightarrow{B C}$

$\overrightarrow{D A}+\overrightarrow{A B}=\overrightarrow{D B}$

$$
\begin{aligned}
& \overrightarrow{A B}=\overrightarrow{D B}-\overrightarrow{D A} \\
&=\binom{-1}{7}-\binom{-2}{3} \overrightarrow{B C}
\end{aligned}=\overrightarrow{B D}+\overrightarrow{D C}
$$

