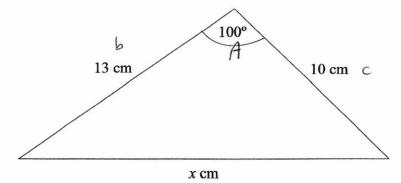
Name:

GCSE (1 - 9)

The Cosine Rule

Instructions


- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- · Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

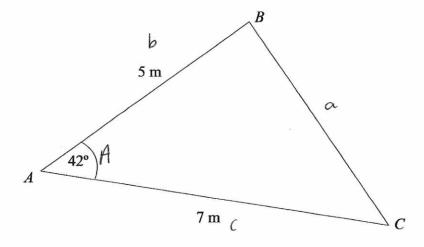
Work out the value of x.

Give your answer to 1 decimal place.

$$\alpha^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$\chi^{2} = (13)^{2} + (10)^{2} - 2(13)(10) \cos (100)$$

$$\chi^{2} = 314.1485...$$

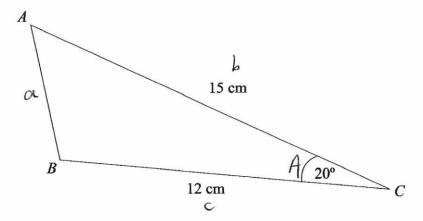

$$\chi = \sqrt{Ans}$$

$$= 17.7 (1dp)$$

17.7

(Total for question 1 is 3 marks)

2


Work out the length of BC.

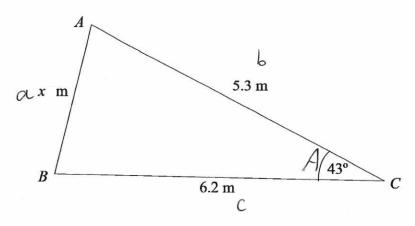
Give your answer to 3 significant figures.

$$a^{2} = (5)^{2} + (7)^{2} - 2(5)(7) \cos (42)$$
 $a^{2} = 21.97986...$
 $a = \sqrt{\text{Pm s}}$
 $= 4.69 (3sf)$

4.69 m

(Total for question 2 is 3 marks)

Work out the length of AB.


Give your answer to 1 decimal place.

$$a^{2} = (15)^{2} + (12)^{2} - 2(15)(12)\cos(20)$$
 $a^{2} = 30.7106...$
 $a^{2} = \sqrt{4ms}$
 $a = 5.5 (1dp)$

5. 5 cm

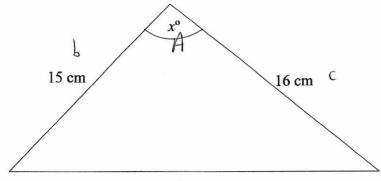
(Total for question 3 is 3 marks)

4

Work out the value of x.

Give your answer to 3 significant figures.

er to 3 significant figures.


$$z^{2} = (5.3)^{2} + (6.2)^{2} - 2(5.3)(6.2) \cos(43)$$

$$z^{2} = 18.4654...$$

$$z = \sqrt{4.30} (3sf)$$

4.30

(Total for question 4 is 3 marks)

20 cm

Work out the value of x.

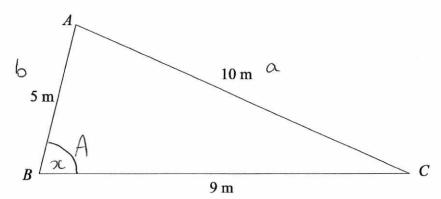
a

Give your answer to 3 significant figures.

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$\cos x = \frac{(15)^{2} + (16)^{2} - (20)^{2}}{2(15)(16)}$$

$$\cos x = \frac{27}{160}$$


$$x = \cos^{-1}(Ams)$$

= 80.3 (3sf)

80.3

(Total for question 5 is 3 marks)

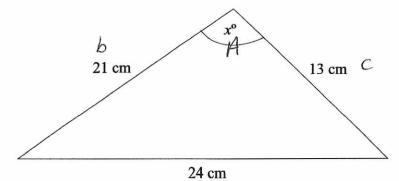
6

Work out the size of angle ABC

C

Give your answer to the nearest degree.

$$\cos x = \frac{(5)^2 + (9)^2 - (10)^2}{2(5)(9)}$$


$$\cos x = \frac{1}{15}$$

$$x = \cos^{-1}(Ans)$$

$$= 86 \text{ (Nearest degree)}$$

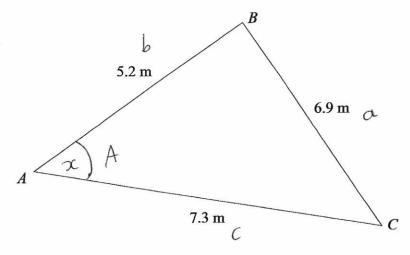
86

(Total for question 6 is 3 marks)

a

Work out the value of x.

Give your answer to 1 decimal place.


cos
$$\infty = \frac{(21)^2 + (13)^2 - (24)^2}{2(21)(13)}$$

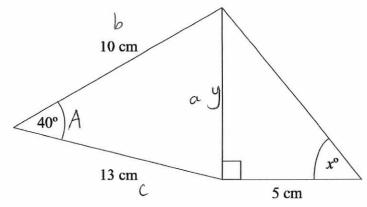
$$\cos x = \frac{17}{273}$$
 $x = \cos^{-1}(Ams)$
 $= 86.4 (1dp)$

86.4

(Total for question 7 is 3 marks)

8

Work out the size of angle BAC.

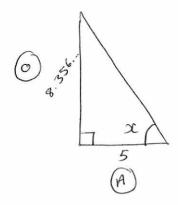

Work out the size of angle BAC. Give your answer to 3 significant figures. $\cos x = \frac{(5.2)^2 + (7.3)^2 - (6.9)^2}{2(5.2)(7.3)}$

$$cos x = \frac{409}{949}$$

$$x = cos^{-1}(Ans)$$

$$= 64.5 \quad (3sf) \quad (Total for question 8 is 3 marks)$$

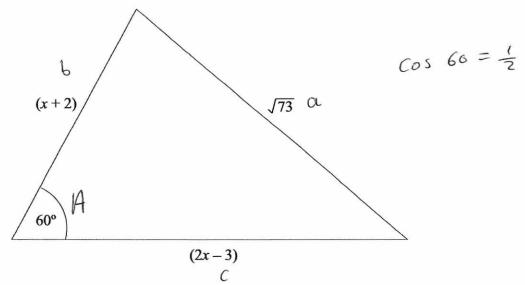
q


Work out the value of x. Give your answer to 1 decimal place.

$$y^{2} = (10)^{2} + (13)^{2} - 2(10)(13) \cos(40)$$

$$y^{2} = 69.828...$$

$$y = \sqrt{Ams}$$


$$y = 8.356341591$$

$$\tan \alpha = \frac{Ans}{5}$$

$$\alpha = \tan^{-1}\left(\frac{Ans}{5}\right)$$

$$= 59.1^{\circ} \quad (101p)$$

Work out the value of x.

$$\alpha^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$73 = (x+2)^{2} + (2x-3)^{2} - 2(x+2)(2x-3) \cos 60$$

$$73 = (x+2)(x+2) + (2x-3)(2x-3) - (x+2)(2x-3)$$

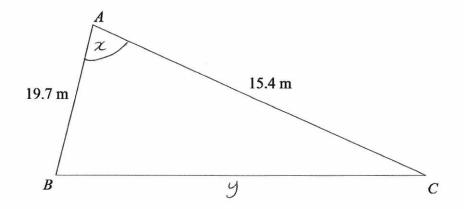
$$73 = x^{2} + 2x + 2x + 4 + 4x^{2} - 6x - 6x + 9 - (bx^{2} - 3x + 4x - 6)$$

$$73 = 5x^{2} - 8x + 13 - (2x^{2} + x - 6)$$

$$73 = 3x^{2} - 9x + 19$$

$$0 = 3x^{2} - 9x - 54$$

$$0 = c^{2} - 3x - 18$$


$$0 = (x - 6)(x + 3)$$

$$x = 6 = x = -3$$

x cannot = -3 as the lengths would be negative.

6

The area of the triangle is 100m^2 Calculate the perimeter of triangle *ABC*. Give your answer to 3 significant figures.

$$\frac{1}{2}ab \sin C = 100$$

$$\frac{1}{2}(19.7)(15.4)\sin x = 100$$

$$151.69 \sin x = 100$$

$$\sin x = \frac{100}{151.69}$$

$$x = \sin^{-1}(\frac{100}{151.69})$$

$$= 41.24187853$$

$$y^{2} = (19.7)^{2} + (15.4)^{2} - 2(19.7)(15.4) \cos(41.24187...)$$

$$y^{2} = 169.0069753$$

$$y = \sqrt{Ans}$$

$$= 13.0 \quad (3sf)$$

48.1 m