Name:

IGCSE
 Circle Theorems

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

B is a point on the circumference of a circle, centre O.
$A B$ is a tangent to the circle.
Angle $B O A=72^{\circ}$
Work out the size of angle $B A O$.
You must show all your working.

$$
\begin{aligned}
O B A & =90^{\circ} \quad \text { Tangent meets radius at } 90^{\circ} \\
B A O & =180-90-72 \quad \text { Angles in a triangle } \\
& =180^{\circ} \quad \text { add to } 10^{\circ}
\end{aligned}
$$

A, B, C and D are points on the circumference of a circle.
Angle $B O C=66^{\circ}$
(i) Find the size of angle $B A C$.
(ii) Give a reason for your answer.

The angle at the circumference is half the angle at the centre

3

B and C are points on a circle, centre O. $A B$ and $A C$ are tangents to the circle.
$O B A$ and OCA $=90^{\circ}$
Angle $B A C=40^{\circ}$ Tangent meets radius at 90°

Work out the size of angle $B O C$.
You must show all your working.

$$
360-90-90-40=140^{\circ}
$$

Angles in on quadrilateral add to 360°
4

A, B, C and D are points on the circumference of a circle.
Angle $C A D=62^{\circ}$
Angle $A D B=51^{\circ}$
(i) Find the size of angle $A C B$.
\qquad
(ii) Give a reason for your answer.

5

A, B, C and D are points on the circumference of a circle.
Angle $B A D=94^{\circ}$
Angle $A D C=83^{\circ}$

$$
180-83
$$

(i) Find the size of angle $A B C$.

(ii) Give a reason for your answer.

6

$O A B=48^{\circ}$ A and B are points on the circumference of a circle, centre O. Angles ort base Angle $A B O=48^{\circ}$ of isosceles are equal
(i) Find the size of angle $A O B$.

$$
180-48-48
$$

(ii) Give a reason for your answer.

$$
84
$$

7

A and C are points on the circumference of a circle, centre O. $A B$ and $B C$ are tangents to the circle.

Angle $A B C=46^{\circ}$
Find the size of angle $O A C$.
Give reasons for each stage of your working.
$A B C$ is an isosceles triangle, 2 tangents from the save point are equal

$$
C A B=\frac{180-46}{2}=\frac{134}{2}=67^{\circ}
$$

Angles at the base of an isosceles triangle are equal
$O A B=90^{\circ}$ Tangent rets radius at 90°

$$
O A C=90-67=23^{\circ}
$$

8

A and B are points on the circumference of a circle, centre O. $D C E$ is a tangent to the circle.

Angle $A C D=76^{\circ}$
(a) Find the size of angle $A C O$.

You must show all your working.
Give reasons tor

$$
\begin{aligned}
& O C D=90^{\circ} \quad \text { Tangent meets radius at } 90^{\circ} \\
& 90-76=14^{\circ}
\end{aligned}
$$

(b) Find the size of angle $A B C$.

You must show all your working. give reasons for

$$
A B C=76^{\circ} \text { Alternate segment thearen }
$$

\qquad

9

A, B and C are points on the circumference of a circle, centre O.
$B D$ and $C D$ are tangents to the circle.
Angle $O D C=26^{\circ}$
Find the size of angle $B A C$.
Give reasons for each stage of your working.

$$
\begin{aligned}
& \text { Triangle } B O D=\text { Triangle } D O C \text { all sides are equal } \\
& O B D \text { and } O C D=90^{\circ} \text { Tangent meets radius } \\
& \text { at } 90^{\circ} \\
& \text { BOD and } \operatorname{COD}=180-90-26 \\
& =64^{\circ} \\
& B O C=2 \times 64=128^{\circ} \\
& B A C=\frac{128}{2}=64^{\circ} \quad \begin{array}{l}
\text { Angle at circumference } \\
\text { is half the angle } \\
\text { at the centre }
\end{array}
\end{aligned}
$$

10

A and C are points on the circumference of a circle, centre O.
$B C$ is a tangent to the circle.
Angle $C A B=29^{\circ}$
Find the size of angle $A B C$.
You must show all your working.

$$
\begin{aligned}
& O C A=29^{\circ} \\
& \text { Angles at the base } \\
& \text { an isosceles triangle } \\
& \text { are equal } \\
& \begin{aligned}
O C B=90^{\circ} & \text { Tangent weeks radimu } \\
& \text { at } 90^{\circ}
\end{aligned} \\
& A B C=180-90-29-29 \\
& =32^{\circ} \\
& \text { Angles in a triangle } \\
& \text { add to } 180^{\circ}
\end{aligned}
$$

A, B and C are points on the circumference of a circle, centre O. $D C E$ is a tangent to the circle.

Angle $A B C=61^{\circ}$
Angle $A C B=73^{\circ}$
Angle $B C E=x^{\circ}$
Find the value of x.
You must show all your working.

$$
\begin{aligned}
& B A C= 180-73-61 \\
&= 46^{\circ} \quad \text { Angles in a triangle } \\
& \text { add to } 180^{\circ} \\
& \text { and } \\
& x=46^{\circ} \quad \text { Alternate segment theorem }
\end{aligned}
$$

12

A, B and C are points on the circumference of a circle, centre O. $D C E$ is a tangent to the circle.

$$
\begin{aligned}
& A B=B C \\
& \text { Angle } B C E=65^{\circ}
\end{aligned}
$$

Find the size of angle $A O C$.
You must show all your working.
$B A C=65^{\circ}$ Alternate segment theorem
$A C B=65^{\circ}$ Angles at the base of an isosceles triangle are equal

$$
A B C=180-65-65
$$

$$
=50^{\circ} \text { Angles in a triangle }
$$

$$
\text { add to } 180^{\circ}
$$

$$
A O C=2 \times 50 \quad \text { Angle at centre is }
$$

$$
=100^{\circ} \quad \text { twice angle at circumference }
$$

13

A, B, C and D are points on the circumference of a circle, centre O.
Angle $A D C=118^{\circ}$
Angle $A O C=x^{\circ}$
Work out the value of x.
You must show all your working.

$$
\begin{array}{rlrl}
A B C & =180-118 & & \text { opposite angles in a } \\
& =62^{\circ} & & \text { cyclic quadrilateral add } \\
& & \text { to } 180^{\circ}
\end{array}
$$

$$
\begin{aligned}
A O C=2 \times 62 \quad & \text { Angle at centre is } \\
=124^{\circ} & \text { twice angle at } \\
& \text { circumference }
\end{aligned}
$$

A, B and C are points on the circumference of a circle, centre O. $D C E$ is a tangent to the circle.

Angle $A B O=27^{\circ}$
Angle $B C E=53^{\circ}$
Find the size of angle $A C O$.
You must show alt your working.
Give reasons for each stage of you working,

$$
B A O=27^{\circ} \text { Angles at base of } 1 \text { isosceles }
$$ triangle are equal

$$
\begin{aligned}
& B A C=53^{\circ} \text { Alternate segment theorem } \\
& O A C=53-27=26^{\circ} \\
& A C O=26^{\circ} \text { Angles at bare of isosceles }
\end{aligned}
$$ triangle are equal

15

A and B is a point on the circumference of a circle, centre O.
$A C$ is a tangent to the circle.
$O B C$ is a straight line.

$$
\begin{aligned}
& O A=5 \mathrm{~cm} \\
& A C=12 \mathrm{~cm}
\end{aligned}
$$

Find the length of $B C$.
You must show all your working.

$$
\begin{aligned}
O A C= & 90^{\circ} \quad \text { Tangent meets radius at } 90^{\circ} \\
5^{2}+12^{2} & =O C^{2} \\
169 & =0 C^{2} \\
O C & =\sqrt{169} \\
& =13 \mathrm{~cm} \\
B C & =13-5=8 \mathrm{~cm} \quad(\text { radius }=5 \mathrm{~cm})
\end{aligned}
$$

\qquad cm

16

A, B and C are points on the circumference of a circle, centre O.
Angle $C A B=2 x^{\circ}$
Angle $A B C=3 x^{\circ}$
Find the value of x.
You must show all your working.

$$
\begin{gathered}
A C B=90^{\circ} \text { Angle in a semi circle } \\
\text { is } 90^{\circ} \\
2 x+3 x+90=180 \\
5 x=90 \\
x=18^{\circ}
\end{gathered}
$$

$$
x=\ldots / 8
$$

(Total for Question 16 is 3 marks)

17

A, B, C and D are points on the circumference of a circle, centre O.
Angle $B O D=x^{\circ}$
Find the size of angle $B C D$, in terms of x.
Give reasons for each stage of your working.

$$
\begin{aligned}
& B A D=\frac{1}{2} x \quad \begin{array}{l}
\text { Angle at circumference } \\
\text { is half angle at centre }
\end{array} \\
& B C D=180-\frac{1}{2} x \text { opposite angles in } \\
& \text { a cyclic quadrilaterd } \\
& \text { add to } 180
\end{aligned}
$$

C, D and E are points on a circle, centre O.
$A E B$ is a tangent to the circle at E.
$C D=D E$
Angle $A E C=x^{\circ}$
Find the size of angle $O E D$, in terms of x. Give reasons for each stage of your working.

$$
\begin{aligned}
& C D E=x \text { Alternate segment theorem } \\
& C E D=\frac{180-x}{2} \\
& \text { Angles at the base } \\
& \text { of an isosceles triangle } \\
& \text { are equal } \\
& \begin{array}{r}
O E C=90-x \quad O E A=90^{\circ} \text { Tangent meets } \\
\text { rains at } 90^{\circ}
\end{array} \\
& O E D=\frac{180-x}{2}-(90-x) \\
& =90-\frac{1}{2} x-90+x \\
& =\frac{1}{2} x
\end{aligned}
$$

19

$A B$ and $C D$ are chords of a circle that intersect at E .
$A E=5 \mathrm{~cm}$
$\mathrm{BE}=9 \mathrm{~cm}$
$6 x=5 \times 9$
$C E=9 \mathrm{~cm}$
$D E=x \mathrm{~cm}$
$6 x=45$
Find the value of x.

$$
x=\frac{45}{6}=\frac{15}{2}
$$

20

A, B, C and D are points on a circle. $A C E$ and $B D E$ are straight lines.

$$
4(x+4)=3(3+11)
$$

$A C=x \mathrm{~cm}, B D=10 \mathrm{~cm}, C E=4 \mathrm{~cm}$ and $D E=3 \mathrm{~cm}$
Find the value of x.

$$
\begin{aligned}
4 x+16 & =42 \\
4 x & =26 \\
x & =\frac{13}{2}
\end{aligned}
$$

$$
x=
$$

21

A, D, B and E are points on a circle, centre O. $A F B C, O E C$ and $O F D$ are straight lines.

$$
7(4)=2(y)
$$

$A F=7 \mathrm{~cm}, F B=4 \mathrm{~cm}, B C=5 \mathrm{~cm}, F D=2 \mathrm{~cm}$ and $C E=x \mathrm{~cm}$.
$28=2 y$

$$
y=14
$$

Work out the value of x.
Show your working clearly.

$$
\text { diameter }=14+2=16 \mathrm{~cm}
$$

$$
x(16+x)=5(7+4+5)
$$

$$
16 x+x^{2}=5(16)
$$

$$
16 x+x^{2}=80
$$

$$
x^{2}+16 x-80=0
$$

$$
(x-4)(x+20)=0
$$

$$
x=4 \quad x=-20
$$

x cannot be negative

