Name:

GCSE (1-9)

Vectors

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end
$1 \quad \boldsymbol{a}=\binom{2}{3}$ and $\boldsymbol{b}=\binom{1}{5}$
(a) Write down as a column vector
(i) $\mathbf{a}+\mathbf{b}$
(ii) $2 \mathbf{a}+3 \mathbf{b}$

The vector \mathbf{c} is drawn on the grid.
(b) From the point P, draw the vector $4 \mathbf{c}$

$2 \quad \boldsymbol{a}=\binom{4}{1}$ and $\boldsymbol{b}=\binom{3}{2}$
(a) Write down as a column vector
(i) $\mathbf{a}+\mathbf{b}$
(ii) $2 \mathbf{a}-\mathbf{b}$

$$
c=\binom{5}{-4}
$$

(b) From the point P, draw the vector \mathbf{c}

$3 \quad \boldsymbol{a}=\binom{-2}{3}$ and $\boldsymbol{b}=\binom{5}{-1}$
(a) Write down as a column vector
(i) $\mathbf{a}+\mathbf{b}$
(ii) $2 \mathbf{a}-\mathbf{b}$
(b) Translate the triangle by the vector $\binom{3}{-2}$

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$4 \quad A$ is the point $(3,2)$ and B is the point $(4,-1)$.
(a) Write down as a column vector $\overrightarrow{A B}$
\qquad
C is the point $(5,-2)$ and D is the point $(2,1)$.
(b) Write down as a column vector $\overrightarrow{C D}$
\qquad
$5 \quad A$ is the point $(5,-1)$ and B is the point $(4,-3)$.
(a) Write down as a column vector $\overrightarrow{A B}$
C is the point $(1,6)$ and D is the point $(-3,9)$.
(b) Write down as a column vector $\overrightarrow{C D}$
$6 A B C D E F$ is a regular hexagon with centre O.

$\overrightarrow{O A}=\mathbf{a}$
$\overrightarrow{O B}=\mathbf{b}$
(a) Find, in terms of a, the vector $\overrightarrow{A D}$
(b) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{A B}$
(c) Find, in terms of \mathbf{b}, the vector $\overrightarrow{A F}$

7 The diagram shows a parallelogram.

$$
\begin{aligned}
& \overrightarrow{O A}=2 \mathbf{a} \\
& \overrightarrow{O B}=3 \mathbf{b}
\end{aligned}
$$

(a) Find, in terms of a, the vector $\overrightarrow{D A}$
\qquad
(b) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{A B}$
(c) Find, in terms of a and \mathbf{b}, the vector $\overrightarrow{A C}$

$\overrightarrow{O A}=5 \mathbf{a}$
$\overrightarrow{O B}=3 \mathbf{b}$
M is the midpoint of $A B$
(a) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{A B}$
\qquad
(b) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{A M}$
(c) Find, in terms of \mathbf{a} and \mathbf{b}, the vector $\overrightarrow{O M}$

