Name:

GCSE (1 - 9)

Surface Area

Instructions

- Use black ink or ball-point pen.
- Answer all Questions.
- Answer the Questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each Question are shown in brackets
- use this as a guide as to how much time to spend on each Question.

Advice

- Read each Question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every Question.
- Check your answers if you have time at the end

1 The diagram shows a cuboid..

Find the total surface area of the cuboid.

Front
$$12 \times 4 = 48 \text{ cm}^2$$

Back 48 cm^2

Top
$$12 \times 5 = 60 \text{ cm}^2$$

Bottom 60 cm^2

256 cm²

(Total for question 1 is 3 marks)

2 The diagram shows a triangular prism.

Find the total surface area of the triangular prism.

Front =
$$\frac{1}{2} \times 12 \times 5 = 30 \text{ cm}^2$$

Back = 30 cm^2
Bottom = $12 \times 10 = 120 \text{ cm}^2$
Side = $5 \times 10 = 50 \text{ cm}^2$
Top = $13 \times 10 = 130 \text{ cm}^2$

360 cm2

(Total for question 2 is 3 marks)

3 The diagram shows a triangular prism.

Find the total surface area of the triangular prism.

Front =
$$\frac{1}{2} \times 4 \times 3 = 6 \text{ cm}^2$$

Back = 6 cm^2
Bottom = $4 \times 12 = 48 \text{ cm}^2$
Side = $3 \times 12 = 36 \text{ cm}^2$
Top = $5 \times 12 = 60 \text{ cm}^2$

156 cm²

(Total for question 3 is 3 marks)

The diagram shows a prism.
The cross section of the prism is in the shape of a trapezium.

Calculate the total surface area of the prism.

Front =
$$\frac{1}{2}(7+15) \times 6 = 66 \text{ cm}^2$$

Back = 66 cm^2
Side = $5 \times 8 = 40 \text{ cm}^2$
Side = 40 cm^2
Top = $7 \times 8 = 56 \text{ cm}^2$
Bottom = $8 \times 15 = 120 \text{ cm}^2$

388 cm2

5 The diagram shows a prism.

Total Side

Calculate the total surface area of the prism.

= 70 cm2

Front =
$$3 \times 7 + 5 \times 3 = 36 \text{ cm}^2$$

Back = 36 cm^2

Bottom = 8×10 = 80 cm^2

Total Top = 80 cm^2

Side = 7×10 = 70 cm^2

6 The diagram shows a box.

5 of these boxes are going to be painted.

Each pot of paint can cover 6m².

How many pots of paint are needed to paint the 5 boxes?

Front =
$$1 \times 0.5 = 0.5 \text{ m}^2$$

Back = $= 0.5 \text{ m}^2$
Side = $0.4 \times 0.5 = 0.2 \text{ m}^2$
Side = 0.2 m^2
Top = $1 \times 0.4 = 0.4 \text{ m}^2$
Bottom = $= 0.4 \text{ m}^2$

$$2.2 m^2 \times 5 = 11 m^2 \text{ in total}$$

$$1 pot = 6 m^2$$

 $2 pots = 12 m^2$

2 nots

(Total for question 6 is 4 marks)

7 The diagram shows a cylindrical tank. The tank has a top and a bottom.

4 of these tanks are going to be painted. Each tank has a diameter of 50 cm and a height of 1.5 m.

Each pot of paint can cover 4 m².

How many pots of paint are needed to paint the 4 tanks?

$$Top = \pi r^2 = \pi (0.25)^2$$

$$= \frac{\pi}{16} \text{ or } 0.1963495...$$

Curved orea = circumference x 1.5
=
$$\pi(0.5) \times 1.5$$

= $\frac{3}{4}\pi \propto 2.35619...$

Total surface area =
$$\frac{1}{16}\pi + \frac{1}{16}\pi + \frac{3}{4}\pi$$

= $\frac{7}{8}\pi$ or 2.74889 m²

.....pots

(Total for question 7 is 4 marks)

o 5 m
50 cm

1.5 m

Radius = 0.25m