Name:

IGCSE

Sequences

Instructions

- Use black ink or ball-point pen.
- Answer all Questions.
- Answer the Questions in the spaces provided
- there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each Question are shown in brackets
- use this as a guide as to how much time to spend on each Question.

Advice

- Read each Question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every Question.
- Check your answers if you have time at the end

1 Here are the first five terms of a sequence.
2
5
8
11
14

Write down the next two terms in the sequence.

2 The first term in a sequence is 3.
The term to term rule is add 5 .

$$
3,8,13,18,23
$$

Is 97 a term in the sequence?
Give a reason for your answer.
No..... All terms end in 3 and 8
\qquad

3 Here are the first five terms of a sequence
6
10
14
18
22

Write down the next two terms in the sequence.
26

4 The nth term of a sequence is $4 n+3$
$4(1)+3=7$
(a) Find the first two terms of this sequence.
$4(2)+3=11$
(b) Is 35 a term in this sequence.

You must show how you get your answer.

$$
\begin{aligned}
4 n+3 & =35 \\
4 n & =32 \\
n & =8
\end{aligned}
$$

Yes it is the 8th term

5 The nth term of a sequence is $n^{2}+1$
(a) Find the first two terms of this sequence. $(2)^{2}+1=5$
$\ldots 2$
2
$n^{2}+1=35$
$n^{2}=34$
$n=\sqrt{34}$ (not a whole number)
No
\qquad
$6 \quad$ Here are the first 5 terms of a sequence.
17
14
11
8
5
(a) Find the next term of this sequence.
\qquad 2

The nth term of a different sequence is $10 n^{2}+5$
(b) Work out the $5^{\text {th }}$ term of this sequence.

$$
\begin{align*}
& 10(5)^{2}+5 \\
& 10(25)+5 \\
& 250+5 \tag{1}
\end{align*}
$$

$$
255
$$

$7 \quad$ Here are the first four terms of a sequence.

$$
\begin{array}{llll}
7 & 13 & 19 & 25
\end{array}
$$

(a) Write down the next term in the sequence.
\qquad
$3!$
(b) Explain how you got your answer

8 Here are the first four terms of a number sequence.
2
3
5
9

The rule to continue the sequence is
multiply the previous term by 2 and then subtract 1
Work out the $5^{\text {th }}$ term of this sequence.

$$
\begin{aligned}
& 9 \times 2=18 \\
& 18-1=17
\end{aligned}
$$

$9 \quad$ Here are the first 5 terms of a sequence.
29
24
19
14
9

Find the 8th term of this sequence.

$$
\begin{array}{lll}
4 & -1 & -6
\end{array}
$$

10 The nth term of a sequence is $n^{2}+3$
(a) Find the first three terms of this sequence.

$$
\begin{aligned}
& (1)^{2}+3=4 \\
& (2)^{2}+3=7 \\
& (3)^{2}+3=12
\end{aligned}
$$

4
(b) Find the $10^{\text {th }}$ term in this sequence.

$$
(10)^{2}+3=103
$$

\qquad

11 Here is a sequence of patterns made from white tiles and grey tiles.

pattern number 1

pattern number 2

pattern number 3
(a) In the space below, draw pattern number 4.

(b) Work out the total number of tiles to make pattern number 7.

22
Kyle says
"There are 4 white tiles in pattern number 3 so there will be 8 white tiles in pattern number 6."
(c) Is Kyle right?

You must give a reason for your answer.

12 Here is a sequence of patterns made from grey counters.

pattern number 1

pattern number 2

pattern number 3
(a) In the space below, draw pattern number 4.

$$
\begin{array}{lllllll}
& 0 & & 0 & & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
& 0 & & 0 & & 0 & 0
\end{array}
$$

(b) Work out the total number of counters to make pattern number 10 .
$\begin{array}{cc}4 n+1 & 5 \\ 4 n & 4\end{array}$
$9 \quad 13$
17
$4 n+1$
$4(10)+1=41$

13 Here are the first five terms of a sequence.
$\begin{array}{lll}31 & 27 & 23\end{array}$

19
15
11
7
3
(a) Find the first negative term in the sequence.

$$
\begin{array}{llll}
-4 n & -4 & -8 & -12
\end{array}
$$

$-4 n+35 \quad 31 \quad 27 \quad 23$
(b) Is -30 a term in this sequence?

Give a reason for your answer.
.... No.... All terms in the sequence are odd
\qquad

14 Here are the first 5 terms of an arithmetic sequence.
-3
1
5
9
13
(a) Find an expression, in terms of n, for the nth term of this sequence.
$4 n 4$
8
12
16
\qquad
The nth term of a different arithmetic sequence is $2 n-3$
(b) Is 101 a term in this sequence?

Show how you get your answer.

$$
\begin{aligned}
2 n-3 & =101 \\
2 n & =104 \\
n & =52 \quad \text { Yes } \quad \text { 52 nd term }
\end{aligned}
$$

15 Here are the first 5 terms of a sequence.
9
14
19
24
29

Find an expression, in terms of n, for the nth term of this sequence.
$5 n \quad 5$
10
15
20

$$
5 n+4
$$

16 Here are the first 5 terms of a sequence.
25
22
19
16
13

Find an expression, in terms of n, for the nth term of this sequence.

$$
-3 n-3 \quad-6
$$

\qquad

17 Here are the first four terms of an arithmetic sequence.
4
11
18
25

Write down an expression, in terms of n, for the nth term of the sequence.
$7 n$
7
14
21
28
.........no -3

18 Here are the first four terms of an arithmetic sequence.
35
31
27
23

Write down an expression, in terms of n, for the nth term of the sequence.
$-4 n$
-4
-8
-12
-16
$-4 n+39$
(Total for Question 18 is 2 marks)
19 Here are the first five terms of an arithmetic sequence.
21
27
33
39
45

Write down an expression, in terms of n, for the nth term of the sequence.
$6 n$
6
12
18
24
30
$6 n+15$

20 Here are the first five terms of an arithmetic sequence.
2
7
12
17
22

Write down an expression, in terms of n, for the nth term of the sequence.
$5 n$
5
10
15
20
25
.............. $5 n-3$

