Mathematics
 2022 Paper 3 (Calculator) Higher Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres,
Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.

- You must show all your working.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

mathsgenie.co.uk

Higher Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

$$
\text { Area of a trapezium }=\frac{1}{2}(a+b) h
$$

Volume of a prism $=$ area of cross section \times length Where r is the radius and d is the diameter:

Circumference of a circle $=2 \pi \mathrm{r}=\pi d$
Area of a circle $=\pi r^{2}$

Pythagoras' Theorem and Trigonometry

b

In any right-angled triangle where $a, \mathrm{~b}$ and c are the length of the sides and c is the hypotenuse:

$$
a^{2}+b^{2}=c^{2}
$$

In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:

$$
\sin A=\frac{a}{c} \quad \cos A=\frac{b}{c} \quad \tan A=\frac{a}{b}
$$

In any triangle ABC where a, b and c are the length of the sides:
sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Probability

Where $\mathrm{P}(A)$ is the probability of outcome A and $\mathrm{P}(B)$ is the probability of outcome B :

$$
\begin{aligned}
& \mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \text { and } B) \\
& \mathrm{P}(A \text { and } B)=\mathrm{P}(A \text { given } B) \mathrm{P}(B)
\end{aligned}
$$

1 The frequency table shows the heights, in cm , of some tomato plants.

Height (cm)	Frequency
$140<\mathrm{h} \leqslant 150$	7
$150<\mathrm{h} \leqslant 160$	10
$160<\mathrm{h} \leqslant 170$	15
$170<\mathrm{h} \leqslant 180$	19
$180<\mathrm{h} \leqslant 190$	9

Draw a frequency polygon to show this information.

2 Banana computers sold 19.3 million computers in 2017.
In 2018, they sold 18.2 million computers.
Work out the percentage decrease in the number of computers sold.
Give your answer to three significant figures.
\qquad

3 The value of a house increased by 6%.
The house then had a value of $£ 265000$
Work out the value of the house before the increase.
£ \qquad
$4 \quad s=u t+\frac{1}{2} a t^{2}$
$u=-5$
$a=4$
$t=3$
(a) Work out the value of s.

$$
s=
$$

\qquad
(b) Make a the subject of $s=u t+\frac{1}{2} a t^{2}$

5 There are 120 people in a school canteen.
40% of the people in the canteen are in year 11 students.
The number of year 11 students in the canteen is three times the number of year 10 students. The rest of the people in the canteen are year 9 students.
the number of year 9 students : the number of year 10 students $=n: 1$
Work out the value of n.
You must show how you get your answer.
\qquad

6 Amy drives 300 miles from London to Newcastle.
She drives the first 165 miles at an average speed of 60 mph .
From this point it takes Amy 3 hours and 5 minutes to complete her journey.
What was Amy's average speed for the whole journey?
Give your answer correct to 3 significant figures.
mph
$7 \quad$ Potatoes cost $£ 9$ for a 12.5 kg bag at a farm shop.
The same type of potatoes cost $£ 1.83$ for a 2.5 kg bag at a supermarket.
Where are the potatoes the better value, at the farm shop or at the supermarket?
You must show your working.
$8 \quad A B C D$ is a trapezium.
Calculate the area of $A B C D$.

cm^{2}

9 Given that $81 \times \sqrt{3}=3^{n}$
Find the value n.

10 There are 5 starters, 6 main courses and x desserts in a restaurant.
Riley says there are 130 different ways of choosing a starter, a main course and a dessert.
Could Riley be correct?
You must show your working.

11 The line $A B$ passes through the points $\mathrm{A}(-2, k)$ and $(4,8)$.
The gradient of $A B$ is -2 .
Work out the value of k.

12 Expand and Simplify $(x+5)(x-3)(2 x-1)$
$13 \quad \boldsymbol{a}=\binom{-2}{3}$ and $\boldsymbol{b}=\binom{5}{-1}$
(a) Write down as a column vector
(i) $\mathbf{a}+\mathbf{b}$
\qquad
(ii) $2 \mathbf{a}-\mathbf{b}$

14 A car's value is decreasing by $x \%$ each year.
The car's value will decrease by 60% in 6 years, work out the value of x. Give your answer to 2 decimal places.

15

A and C are points on the circumference of a circle, centre O.
$B C$ is a tangent to the circle.
Angle $C A B=29^{\circ}$
Find the size of angle $A B C$.
You must show all your working.

16 The two triangles in the diagram are similar.

There are two possible values of x.
Work out each of these values.
State any assumptions you make in your working

17 Show that $3+\left[(x+4) \div \frac{x^{2}-16}{x-5}\right] \quad$ simplifies to $\frac{a x-b}{c x-d}$ where a, b, c and d are integers.

18 The diagram shows a triangular prism.

$$
\begin{aligned}
& C D=20 \mathrm{~cm} \\
& A D=30 \mathrm{~cm} \\
& \text { Angle } F D C=35^{\circ}
\end{aligned}
$$

Calculate the size of the angle the line $A F$ makes with the plane $A B C D$.
Give your answer correct to 3 significant figures.

19 The table shows information about the time, in seconds, taken for some people to run a 100 m race.

Time (s)	Frequency
$10<\mathrm{t} \leqslant 12$	6
$12<\mathrm{t} \leqslant 13$	21
$13<\mathrm{t} \leqslant 14$	23
$14<\mathrm{t} \leqslant 16$	
$16<\mathrm{t} \leqslant 20$	8

(a) Use the information on the table to complete the histogram.

(b) Use the histogram to complete the table.

20

$$
\begin{array}{ll}
f=\frac{\sqrt{g}}{h} & \begin{array}{l}
g=12.7 \text { correct to } 3 \text { significant figures } \\
h
\end{array} \quad 9.294 \text { correct to } 3 \text { decimal places }
\end{array}
$$

By considering bounds, work out the value of f to a suitable degree of accuracy. Give a reason for your answer.

21 Here are two right angled triangles.

Given that

$$
\cos a=\cos b
$$

find the value of x.
You must show all your working.

22 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& x^{2}-3 y^{2}=13 \\
& 2 x+3 y=4
\end{aligned}
$$

23 There are some red counters and some blue counters in a bag.
The ratio of red counters to blue counters is $3: 1$.
Two counters are removed at random.
The probability that both the counters taken are blue is $\frac{1}{20}$
Work how many counters were in the bag before any counters were removed.

Extra Question

The number of people living in a town t years from now is P_{t} where

$$
\begin{aligned}
& P_{0}=55000 \\
& P_{t+1}=1.03\left(P_{t}-800\right)
\end{aligned}
$$

Work out the number of people in the town 3 years from now.

