Write	your	name	here
-------	------	------	------

Surname

Other Names

Mathematics 2022 Paper 1 (Non-Calculator) Higher Tier

Time: 1 hour 30 minutes

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name,

centre number and candidate number.

- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may not be used.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

mathsgenie.co.uk

Higher Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

Area of a trapezium = $\frac{1}{2}(a+b)h$

Volume of a prism = area of cross section \times length

Where r is the radius and d is the diameter:

Circumference of a circle = $2\pi r = \pi d$

Area of a circle = πr^2

Pythagoras' Theorem and Trigonometry

Compound Interest

Where P is the principal amount, r is the interest rate over a given period and n is number of times that the interest is compounded:

Total accrued =
$$P\left(1 + \frac{r}{100}\right)^{r}$$

END OF EXAM AID

Quadratic formula

The solution of $ax^2 + bx + c = 0$

where $a \neq 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In any right-angled triangle where a, b and c are the length of the sides and c is the hypotenuse:

 $a^2 + b^2 = c^2$

In any right-angled triangle ABC where a, b and c are the length of the sides and c is the hypotenuse:

$$\sin A = \frac{a}{c} \quad \cos A = \frac{b}{c} \quad \tan A = \frac{a}{b}$$

In any triangle ABC where a, b and c are the length of the sides:

sine rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

cosine rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle = $\frac{1}{2}ab\sin C$

Probability

Where P(A) is the probability of outcome A and P(B) is the probability of outcome B:

P(A or B) = P(A) + P(B) - P(A and B)

$$P(A \text{ and } B) = P(A \text{ given } B) P(B)$$

1
Write 240 as a product of its prime factors.

(Total for Question 1 is 2 marks)

2
(a) Work out
$$\frac{3}{4} - \frac{7}{10}$$

(b) Work out $2\frac{1}{3} \times \frac{3}{5}$
(2)

(c)
(2)

(2)

(1) Work out $2\frac{1}{3} \times \frac{3}{5}$

(2)

(1) Close of the second second

In a bag there are only red counters, blue counters, green counters and yellow counters.

A counter is taken at random from the bag.

3

The table shows the probabilities that the counter will be green or will be yellow.

Colour	Red	Blue	Green	Yellow
Probability			0.35	0.20

The probability that the counter will be red is twice the probability that the counter will be blue.

There are 21 green counters in the bag.

Work out the number of red counters in the bag.

(Total for Question 3 is 4 marks)

5	5 < 2y < 12 where y is an integer.	
	(a) Write down all the possible values of y .	
	(b) Solve $4 > 19 - 3x$	(2)
		(2)
		(Total for Question 5 is 4 marks)
6	Dermot has 240 counters. The counters are either red, or blue, or yellow or green.	
	15% of the counters are red.	
	$\frac{2}{5}$ of the counters are blue	
	The ratio of yellow counters to green counters is 3:1	
	Work out the number of yellow counters Dermot has.	
		(Total for Question 6 is 4 marks)
		,,,

Liquid **A** has a density of 1.2 g/cm^3

150 cm³ of Liquid A is mixed with some of Liquid B to make Liquid C.

Liquid C has a mass of 220 g and a density of 1.1 g/cm³

Find the density of Liquid **B**.

g/c

(Total for Question 9 is 3 marks)

9

	10 students have a mean height of 150 cm. 4 of the students have a mean height of 165 cm.	
	Work out the mean height of the other 6 students.	
		(Total for Question 10 is 3 marks
	The points A, B, C and D lie in order on a straight line.	
	AB:BD = 2:5 and AC:CD = 4:7	
F	ind <i>AB:BC:CD</i>	

12 Jon plays a game where he can win, draw or lose.

The probability Jon wins any game 0.5. The probability Jon draws any game is 0.3

Jon plays two games.

Work out the probability Jon wins exactly one game.

(Total for Question 12 is 3 marks)

Height	Cumulative Frequency
$140 < h \leqslant 150$	7
$140 < h \leqslant 160$	17
$140 < h \leqslant 170$	32
$140 < h \leqslant 180$	51
$140 < h \leqslant 190$	57
$140 < h \leqslant 200$	60

(a) On the grid, plot a cumulative frequency graph for this information.

14
Find the value of
$$\left(\frac{64}{125}\right)^{-\frac{3}{2}}$$

(Total for Question 14 is 2 marks)

15

Write 0.16 as a fraction in its simplest form.

(Total for Question 14 is 2 marks)

(Total for Question 15 is 2 marks)

(1) (Total for Question 17 is 2 marks) **18** The diagram shows a cuboid.

All the measurements are in centimetres. The total surface area of the cuboid is 172 cm^2

Find the value of *x*.

.....

(Total for Question 18 is 3 marks)

19	Write $(3 - \sqrt{8})^2$ in the form a	$a + b\sqrt{2}$, where <i>a</i> and <i>b</i> are integers.
----	--	---

(Total for Question 19 is 2 marks)

20 Given that

2x+1 : x+2 = x+8 : 3x-4

Find the possible values of *x*.

(Total for Question 20 is 4 marks)

2 The table shows pairs of valu	tes for x and	1 y			
		x	2	3	
		У	32	72	
(i) Tick the correct statement b	below.				J
	$y \propto x$ $y \propto x$ $y \propto x$	2 3			
(ii) Write a formula for y in terms of y	rms of <i>x</i>				

(Total for Question 22 is 4 marks)

24 A circle has the equation $x^2 + y^2 = 7$

P is the point (-2, $\sqrt{3}$) on the circle $x^2 + y^2 = 7$

Work out the equation of the tangent to the circle at *P*.

(Total for Question 24 is 4 marks)

$$\overrightarrow{OA} = 2 a$$

 $\overrightarrow{OB} = 2b$

N is the point on OB such that ON:NB = 2:1M is the midpoint of AB P is the point on OM such that APN is a straight line.

Find OP:PM

(Total for Question 25 is 5 marks)

25