$$x + y = 6$$

x and y are two **different** whole numbers

What could x and y be?

1 and 5 or 2 and 4

$$x = \begin{bmatrix} 1 \end{bmatrix}$$

$$y = \begin{bmatrix} 5 \end{bmatrix}$$

1 mark

2

$$2x + y = 22$$

x and y are whole numbers less than 10

What could x and y be?

$$x = 9, y = 4$$

$$x = 8, y = 6$$

$$x = 7, y = 8$$

$$y = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

1 mark

3

$$g + h = 10$$

g and h are two even whole numbers

What could g and h be?

2 and 8 or 4 and 6

$$g = \boxed{2}$$

$$h = 8$$

$$3x + y = 11$$

List three possible different whole number pairs for x and y.

x	у
1	8
2	5
3	2

2 marks

5

$$a + 4b = 15$$

List three possible different whole number pairs for a and b.

а	ь
11	1
7	2
3	3

2 marks

6 Here is a pattern of number pairs.

x	y
1	6
2	11
3	16
4	21

Complete the rule for the number pattern.

$$y = \boxed{5} \times x + \boxed{1}$$