

Mark Scheme (Results)

January 2013

GCE Maths – Statistics S1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code UA034849 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by `MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
аM		•
aA	•	
bM1		•
bA1	٠	
bB	•	
bM2		•
bA2		•

 Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the '0' column when it was meant to be '1' and all correct.

January 2013 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$(S_{tt}) = 8702 - \frac{258^2}{10}$ or $(S_{gt}) = 1550.2 - \frac{258 \times 63.6}{10}$ $(S_{tt}) = 2045.6$, $(S_{tt}) = -90.68$ awrt (2046) awrt = 90.7	M1 A1, A1
(b)	$r = \frac{-90.68}{\sqrt{2045.6 \times 7.864}} = -0.714956 \text{awrt} -0.715$	(3) M1 A1 (2)
(c)	Positive e.g. high v corresponds to low t and low t corresponds to high g so expect high v to corresponds to high g <u>or</u> expect more revision to result in a better grade	B1 B1 (2) 7
	Notes	
(a)	M1 for at least one correct expression $1^{st} A1$ for $S_{tt} = awrt 2046$ (Condone $S_{xx} =$ or even $S_{yy} =$) $2^{nd} A1$ for $S_{gt} = awrt -90.7$ (Condone $S_{xy} =$) On epen take care that $1^{st} A1$ is for S_{tt} and $2^{nd} A1$ is for S_{gt}	
(b)	M1 for attempt at correct formula. Must have their S_{tt} , S_{gt} and given S_{gg} in the correct places. Condone miss: Award M1A0 for awrt -0.71 with no expression seen M0 for $\frac{1550.2}{\sqrt{8702 \times 7.864}}$ Correct answer only is 2/2	ing "—"
(c)	1^{st} B1 for saying "positive". Condone dubious arguments here. Ignore mention of 2^{nd} B1 for suitable reason that mentions at least <i>v</i> and <i>g</i> and supports positive correl e.g. "the less <u>revision</u> done the lower the <u>grade</u> " is B1 "should do better with more <u>revision</u> " is B0 since does not mention <u>grades</u> "both coefficients are similar" or two sketches of negative correlation with labelled <i>v</i> , <i>t</i> and <i>g</i> are implied Allow use of letters <i>v</i> and <i>g</i> Allow equivalent terms e.g. "study" instead of "revision" or "score" instead of	skew. lation. axes is B1 since "grade"

Question Number	Scheme	Marks	
2.			
(a)	$F(3) = 1$ gives $\frac{3^3 + k}{40} = 1$	M1	
	So $k = 13$	A1cso (2)	
(b)	$P(X = 1) = \frac{14}{40}$ or 0.35 (o.e.)	B1	
	Use of $P(X = 2) = F(2) - F(1)$ or $P(X = 3) = F(3) - F(2)$	M1	
	$P(X=2) = \frac{7}{40}$ or 0.175, $P(X=3) = \frac{19}{40}$ or 0.475	A1, A1	
		(4)	
(c)	$\operatorname{Var}(4X - 5) = 4^2 \operatorname{Var}(X)$	M1	
	So Var $(4X - 5) = \frac{259}{20}$ or 12.95	A1 (2)	
	20	8	
	Notes		
(a)	M1 for use of F(3) = 1 Attempt at $\frac{3^3 + k}{10} = 1$ must be seen		
	40 27 k = 40 without reference to $F(3) = 1$ is M0		
	A1cso for no incorrect working seen and M1 scored.		
Vonify	Allow M1 for $3^3 + 13$ - 1 but the A1 pervises on explicit comment such as "as	L 12"	
<u>verny</u>	Anow M1 for $\frac{-1}{40}$ = 1 but the A1 requires an <u>explicit</u> comment such as $\frac{1}{40}$	K = 15	
	If a table such as this is seen then award B1M1A1A1. Ignore labels on 2^{nd} row		
A \			
(b)	$\frac{7}{20}$ or 0.35 $\frac{7}{40}$ or 0.175 $\frac{19}{40}$ or 0.475		
	Otherwise apply the following:		
	14 and 25 an any arrant equivalent. Can be labelled $E(1)$ $D(Y = 1)$ or π		
	B1 for $\frac{1}{40}$ or 0.55 of any exact equivalent. Can be labelled $F(1), F(x = 1)$ of p	(x) and	
	associated with $x = 1$ or given in a table but must have <u>a</u> label.		
	M1 can be implied if either $P(X = 2)$ or $P(X = 3)$ is correct		
	1 st A1 for P(X = 2) = $\frac{7}{42}$ or 0.175 or exact equivalent		
	40		
	2^{nd} A1 for P(X = 3) = $\frac{15}{40}$ or 0.475 or exact equivalent		
	NB on epen make sure that the 1 st A1 is for $P(X = 2)$ and 2 nd A1 is for 1	P(X=3)	
(c)	M1 for correct use of the variance formula $(4^2 Var(X) alone secures M1)$		
	A value for Var(X) is not required for this M1		
	A1 for any exact equivalent to 12.95 Correct answer only is 2/2		

Question Number	Scheme	Marks
3. (a)	$\sum t = 140$ (or $\overline{t} = 17.5$) and $\sum m = 32$ (or $\overline{m} = 4$)	B1 B1
	$(S_{tm}) = 469.5 - \frac{"140" \times "32"}{?}$	M1
	$(S_{tm} =) - 90.5$	Alcso
	S _90 5	(4)
(b)	$b = \frac{S_{tm}}{S_{tt}} = \frac{-90.5}{354}$	M1
	$b = -0.255649$ (allow $\frac{181}{708}$) -0.25 or awrt -0.26	A1
	$a = \frac{"32"}{8} - b \times \frac{"140"}{8}$	M1
	So equation of the line is $\underline{m = 8.47 - 0.256t}$ (allow $m = \frac{11999}{1416} - \frac{181}{708}t$)	A1
		(4)
(c)	$(8.47 - 0.256 \times 10 =)5.9$ awrt <u>5.9</u>	B1 (1)
(d)	Should be reliable since 10 is in the range (of the data)	B1 (1) 10
	Notes	
(a)	1 st B1 for 140 seen in correct context or correctly labelled	
	2 B1 for 32 seen in correct context or correctly labelled. (allow a fully correct expression – not " $+$ + ") 4480 used correctly is F	R1R1
	M1 for attempting a correct expression. Follow through their 140 and their 32	
	You may see attempt at $\sum (t-\overline{t})(m-\overline{m})$. This must have all the produce	ets seen.
	A1cso requires a correct expression seen and no incorrect working leading to -90	.5
(b)	1 st M1 for a correct expression for <i>b</i> . Follow through their S_{tm} . Condone miss	ing "–"
	1^{st}A1 for awrt -0.26 or condone -0.25	.1 . 1
	2 nd A1 for a correct method for <i>a</i> . Follow through their sums from part (a) and 2 nd A1 for a correct equation for <i>m</i> and <i>t</i> with $a = awrt 8.47$ and $b = awrt -0.25$ Must be an equation in <i>m</i> and <i>t</i> , use of <i>x</i> or <i>y</i> scores A0 here.	6
(c)	B1 for awrt 5.9 Accept 6 if the correct expression (awrt $8.47 - 10 \times awrt 0.256$) is seen	
(d)	B1 for suggesting it is reliable and mentioning 10 within the range (of the data.) or suggesting it is reliable since interpolating or not extrapolating	
	 NB "it is reliable since <u>it</u> is in the range" is B0 since "<u>it</u>" is not explicit enough Condone extra irrelevant comment but penalise contradictory comments. e.g. "near the extreme so <u>not reliable</u> but not extrapolated so reliable" is B0 since <u>c</u> "reliable since 10 is within the range (of temps) <u>and 5.9 within range of times</u>" is B 	ontradicts 1 since <u>irrelevant</u>

Question Number	Scheme	Marks
4. (a)	$\frac{127 - 100}{15}$ So P(L > 127) = P(Z > 1.8) or 1-P(Z < 1.8) o.e. = 1 - 0.9641 = <u>0.0359</u> (awrt <u>0.0359</u>)	M1 A1 A1 (2)
(b)	$\frac{d-100}{15} = -1.2816 \text{(Calculator gives } -1.2815515\text{)}$ $d = 80.776 \text{(awrt } \underline{80.8}\text{)}$	(3) M1, B1 A1
(c)	Require $P(L > 133 L > 127)$ = $\left[\frac{P(L > 133)}{P(L > 127)}\right] = \frac{P(Z > 2.2)}{P(L > 127)}$	(3) M1 dM1
	$= \left[\frac{1 - 0.9861}{1 - 0.9641}\right] = \frac{0.0139}{[0.0359]}$ $= 0.3871 = awrt 0.39$	A1 A1
S.C.	An attempt at P($L < 133 L > 127$) that leads to awrt 0.61 (M0M1A0A0)	(4) 10
	Notes	
(a)	M1 for attempting to standardise with 127, 100 and 15. Allow \pm 1 st A1 for Z > 1.8. Allow a diagram but must have 1.8 and correct area indicated. Must have the Z so P(L > 127) with or without a diagram is insufficient. May be im 2 nd A1 for awrt 0.0359 (calc. gives 0.035930266). Correct ans only 3/3. M1A0A	nplied by 0.0359 A1 not poss.
Calc	B1 for $z = \pm 1.2816$ (or better) seen anywhere [May be implied by $80.776(72)$ or better seen] A1 for awrt 80.8 (can be scored for using 1.28 but then they get M1B0A1) The 80.8 must follow from correct workingfudging – sign scores A0 If answer is awrt 80.8 and awrt 80.777 or 80.776 or better seen then award M1B1A1	
(c)	It answer is awrt 80.8 or 80.77 then award M1B0A1 (unless of course $z = 1.2816$ is seen) 1 st M1 for clear indication of correct conditional probability or attempt at correct ratio So clear attempt at $\frac{P(L > 133)}{P(L > 127)}$ is sufficient for the 1 st M1	
	2^{nd} dM1 dependent on 1^{st} M1 for P($L > 133$) leading to P($Z > 2.2$). 1^{st} A1 for 0.0139 or better seen coming from P($Z > 2.20$). Dependent on both Ms 2^{nd} A1 for awrt 0.39. Both Ms required	5
ALT	If they assume Alice did not check that the phone was working you may see: [P(L < 127).0] + P(L > 127).P(L > 133 L > 127) Provided the <u>conditional probability</u> as part of this calculation the 1 st M1 can be scored and their final answer will be 0.0 An answer of 0.0139 without sight of the conditional probability is 0/4 (If in doubt	ty is seen 139(4/4) send to review)

Question Number	Scheme	Marks
5. (a)	Width = 4 (cm)	B1
	Area of 14 cm ^{2} represents frequency 28 and area of 4 <i>h</i> represents 18	M1
	$\ln \frac{4h}{14} - \frac{14}{14}$ (0.6) $h = 2.25$ (cm)	Δ 1
	$n = \frac{2}{18} \frac{1}{28} \frac{1}{2$	A1
	10	(3)
(b)	$m = (240) + \frac{10}{22} \times 80$ (o.e.)	M1
	$= 276.36 (\frac{3040}{11}) \qquad ((\pounds)\underline{276} \le m < (\pounds)276.5)$	A1
		(2)
(c)	$\sum fy = 31600$ leading to $\overline{y} = 316$	M1A1
	$\sigma_y = \sqrt{\frac{12452800}{100} - (\bar{y})^2} = 157.07 \text{ (awrt } \underline{157}\text{)}$ Allow $s = 157.86$	M1A1
		(4)
(d)	Skewness = 0.764 (awrt <u>0.76</u> or <u>0.75</u>) [If $n + 1$ used in (b) and $m = 6278$ accent switt 0.72 or 0.72]	B1
	Positive skew $[11 n+1 \text{ used in (b) and } m = \pm 278 \text{ accept awrt } 0.73 \text{ or } 0.72]$	B1ft
		(2)
(e)	$7 = +\frac{80}{2}$	M1
(0)	[~] 150	1111
	$P(240 < X < 400) = 0.40 \sim 0.41$	A1 (2)
(f)	(e) suggests a reasonable fit for this range BUT	(2) B2/1/0
	(d) since skew it will not be a good fit overall	(2)
	Notes	15
(a)	B1 for width (ignore units)	
	M_1 for clear method using area and frequency or their width × their height = 9	
	e.g. seeing both fd of 0.7 and 0.225 (may see fd in the table) [Must use correct interval]	
(b)	M1 for $\frac{10}{22} \times 80$ or $\frac{10.5}{22} \times 80$ (o.e.). Allow use of $(n + 1)$ leading to £278.18 or [278, 278.5]	
	A1 Do not award if incorrect end-point seen but answer only is 2/2	
(c)	1 st M1 attempt at $\sum fy$ with at least 3 correct products or ans. that rounds to 30 000 (to 1 sf) &/100	
	2^{nd} M1 for correct expression including $$. Follow through \overline{y} . Need $\sum fy^2$	correct but
	condone a minor transcription error e.g. 12458200.	
(d)	1 st B1 for awrt 0.76/0.75 for $m = \text{\pounds}276$ or awrt 0.73/0.72 for $m = \text{\pounds}278$	
	2^{nd} B1ft for a correct description of their skew based on their measure <u>or</u> if no measure <u>or a standard or a standa</u>	easure given
(e)	based on their values of mean and median. (correlation is B0) M_1 for an attempt to standardise using the 320 and 150 and either 240 or 400 (in	unlied by (0.53)
	A1 for answer in range [0.40, 0.41] (tables gives 0.4038, calculator 0.40619) Ans only 2/2	
(f)	For B2 we need 2 comments that make reference to each of part (e) and part (d)	
	One comment should suggest it is <u>not</u> good since <u>skew</u> . The other it <u>is</u> since matches <u>range in (e)</u> 1^{st} D1 for one relevant comment	
	2 nd B1 for both comments NB Do not use B0B1	

Quest Num	tion ber	Scheme	Marks
6.	(a)	b 1 3 5 P(B = b) $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ P(B = b) $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	B1 B1
	(b)	Discrete Uniform {distribution}	(2) B1
	(c)	[E(B) =] 3 (by symmetry)	B1 (1)
	(d)	$[E(R) =] 2 \times \frac{2}{3} + 4 \times \frac{1}{6} + 6 \times \frac{1}{6} - 3$	M1
	(e)	$[E(R^{2}) =] 2^{2} \times \frac{2}{3} + 4^{2} \times \frac{1}{6} + 6^{2} \times \frac{1}{6} \left[= \frac{34}{3} \right]$	(2) M1
		$[Var(R) =]\frac{34}{3} - 3^2 = ,\frac{7}{3}$ (or any exact equivalent. NB 2.33 is A0)	dM1, A1
	(f)	Coin lands on 2, choose blue die; coin lands on 5 choose red die	(3) B2/1/0
		P(Avisha wins) = $\frac{1}{2} \times \left(\frac{1}{3} + \frac{1}{3}\right) + \frac{1}{2} \times \frac{1}{6}$	M1
		$=\frac{5}{12}$ (allow awrt 0.417)	A1 (4)
		12	13
	(a)	Notes $1^{\text{st}} B1$ for correctly identifying values of <i>b</i> as 1, 3, 5 or 1, 1, 3, 3, 5, 5	
	(u)	2^{nd} B1 for probabilities all $=\frac{1}{2}$ or exact equivalent (or of course 6 cases of $\frac{1}{2}$)	
	(b)	Any correct probability distribution or probability function is $2/2$. Must be in part (a) B1 for "Discrete Uniform". Both words required.	
	(c)	B1 for answer of 3 o.e. Accept $E(X) = 3$	
	(d)	M1 for an attempt at correct formula. At least 2 correct products seen. If later divide by $n \ne 1$ M0 A1 for an answer of 3. Correct answer only scores both marks.	
	(e)	1 st M1 for a correct attempt at $E(R^2)$. At least 2 correct products seen. Condone $Var(R) = etc$ May be implied by sight of $\frac{34}{3}$ or 11.3 or better.	
		2^{nd} dM1 Dep. on 1^{st} M1 for clear attempt at $E(R^2) - [E(R)]^2$ Must see their value	s <u>used</u> .
		NB Var(R) = E(R ²) - $[E(R)]^2 = \frac{34}{3} - 3$ is M1M0A0 since do not <u>use</u> their	$\left[\mathrm{E}(R)\right]^2$
	(f)	 B2/1/0 Both correct B1B1, one correct B1B0. Do not use B0B1[e.g. always red or RR is B1B0] NB Allow other descriptions of the die e.g. 1st or fair for blue, 2nd for red if they are clear. 	
		M1 for evaluating correct probabilities i.e. only $\frac{1}{3}$, $\frac{1}{12}$ seen <u>or</u> if incorrect choice made:	
		NIT for an answer of . If choose KK $(\frac{1}{4})$, if choose BB $(\frac{1}{3})$, if choose KB $(\frac{1}{6})$ NB $\frac{5}{12}$ as answer scores M1A1. Need to see choices of die stated for B marks.	

Question Number	Scheme	Marks	
7. (a)	$P(A \cup B) = 0.35 + 0.45 - 0.13 = \underbrace{\text{or}}_{= 0.67} 0.22 + 0.13 + 0.32$	M1 A1 (2)	
(b)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1	
	$=\frac{5}{5}$ or 0.6	A1	
(c)	$P(B \cap C) = 0.45 \times 0.2$ $= \underline{0.09}$	(2) M1 A1	
(d)	A C Allow 1 st B1 for 3 intersecting circles in a box with zeros in the regions for $A \cap C$ Do not accept "blank" for zero	(2) B1 B1ft B1 B1	
(e)	$P(B \cup C)' = 0.22 + 0.22$ or $1 - [0.56]$ or $1 - [0.13 + 0.23 + 0.09 + 0.11]$ o.e. = 0.44	(4) M1 A1 (2) 12	
	Notes		
(a)	NB May see Venn diagram for A and B only used for (a) and (b) but M marks are awarded for correct expressions only. No ft from an incorrect diagram for M marks.N)M1 for attempt to use the addition rule. Correct substitution i.e. correct expression seen A1 for 0.67 only. Correct answer only scores 2/2		
(b)	M1 for a correct ratio of probabilities or a correct formula and at least one correct prob For a correct formula allow "1 – their (a)" instead of 0.33 but not for correct ratio case. Do not award for assuming independence i.e. $\frac{P(A' \cap B')}{P(B')} = \frac{0.65 \times 0.55}{0.55}$ is M0. M0 if num>denom A1 for 3/5 or any exact equivalent.		
(c)	M1 for correct expression. Need correct values for $P(B)$ and $P(C)$ seen. A1 for 0.09 or any exact equivalent. Correct answer only is $2/2$		
(d)	No labels A, B, C in (d) loses 1^{st} B1 but can score the other 3 by implicationB1for box with B intersecting A and C but C not intersecting A. No box is B0B1ftfor 0.13 and their 0.09 in correct places. [ft $P(B \cap C)$ from (c)]B1for any 2 of 0.22, 0.22, 0.11 and 0.23 correctB1for all 4 values correct		
(e)	M1 for a correct expression or follow through from their Venn diagram NB $P(B') \times P(C') = 0.55 \times 0.8$ is OK. Do not ft "blank" for zero and M0 for negative probs. A1 for 0.44 only. Correct answer only is 2/2		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA034849 January 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

