Pearson Education accepts no responsibility whatsoever for the accuracy or method of working in the answers given.

Centre No.			Pape	er Refer	ence	100		Surname	Initial(s)
Candidate No.	6	6	6	6	1	0	1	Signature	· s

Paper Reference(s)

6666/01

Edexcel GCE

Core Mathematics C4

Advanced

Monday 25 January 2010 - Morning

Time: 1 hour 30 minutes

Materials required for examination

Items included with question papers

Mathematical Formulae (Pink or

Green)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited.

N35382A

Examiner's use only

Team Leader's use only

1

2

3

Turn over

Total

W850/R6666/57570 4/5/5/4/3

1. (a) Find the binomial expansion of

$$\sqrt{(1-8x)}$$
, $|x|<\frac{1}{8}$,

in ascending powers of x up to and including the term in x^3 , simplifying each term.

- (b) Show that, when $x = \frac{1}{100}$, the exact value of $\sqrt{(1-8x)}$ is $\frac{\sqrt{23}}{5}$.
- (c) Substitute $x = \frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{23}$. Give your answer to 5 decimal places.

$$\frac{1+(\frac{1}{2})(-8x)+(\frac{1}{2})(-\frac{1}{2})(-8x)^{2}+(\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2})}{6}(-8x)^{3}}{2}$$

V 92

10

$$\frac{2\sqrt{23}}{2\sqrt{23}} - \sqrt{23}$$

 $(/\sqrt{523} = 1 - (4)(\frac{1}{100}) - 8(\frac{1}{100})^2 - 32(\frac{1}{100})^3$

2.

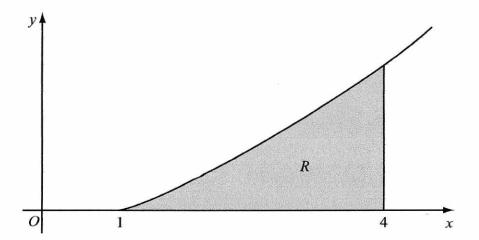


Figure 1

Figure 1 shows a sketch of the curve with equation $y = x \ln x$, $x \ge 1$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 4.

The table shows corresponding values of x and y for $y = x \ln x$.

х	1	1.5	2	2.5	3	3.5	4
y	0	0.608	1.386	2.291	3.296	4.385	5.545

- (a) Complete the table with the values of y corresponding to x = 2 and x = 2.5, giving your answers to 3 decimal places. (2)
- (b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.
 (4)
- (c) (i) Use integration by parts to find $\int x \ln x \, dx$.
 - (ii) Hence find the exact area of R, giving your answer in the form $\frac{1}{4}(a \ln 2 + b)$, where a and b are integers. (7)

b)
$$0.5\left(\frac{2}{2} + 0.608 + 1.386 + 2.291 + 3.296 + 4.385 + 5.545\right)$$

= 7.37 (2dp)

$$\frac{dy = \ln x}{dx} = \frac{dy}{dx} = \frac{\pi}{2}$$

Question 2 continued

	oc In	x dx	_ = _	$\frac{1}{2}x^2$	Inx	-	2 -	1/2 xc2	dχ
J						L A			
			= ,	1 x2	INOC	-	之工	doc	

$$=\frac{1}{2}x^{2}\ln x - \frac{1}{4}x^{2} + c$$

$$\frac{u}{2} \left[\frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 \right]^{\frac{1}{4}}$$

$$\left[\frac{1}{2}(4)^{2}\ln 4 - \frac{1}{4}(4)^{2}\right] - \left[\frac{1}{2}(1)^{2}\ln 1 - \frac{1}{4}(1)^{2}\right]$$

$$\frac{1}{4}(32\ln 4 - 15)$$
 $[\ln 4 = 2\ln 2]$

The curve C has the equation

$$\cos 2x + \cos 3y = 1$$
, $-\frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{4}$, $0 \leqslant y \leqslant \frac{\pi}{6}$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(3)

The point *P* lies on *C* where $x = \frac{\pi}{6}$.

(b) Find the value of y at P.

(3)

(c) Find the equation of the tangent to C at P, giving your answer in the form $ax + by + c\pi = 0$, where a, b and c are integers.

$$b/x = \frac{\pi}{6}$$

$$\cos\left(\frac{2\pi}{6}\right) + \cos 3y = 1$$

$$c/dy = -2 \sin(\frac{2\pi}{3})$$

$$=-2\sqrt{3}$$
 $=-2\sqrt{3}$

Question 3 continued

$$\frac{1}{9}\pi = -\frac{1}{9}\pi + C$$

$$9y = -6x + 2\pi$$

$$6x + 9y - 2TT = 0$$

4. The line l_1 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6\\4\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-1\\3 \end{pmatrix}$$

and the line l_2 has vector equation

$$\mathbf{r} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$

where λ and μ are parameters.

The lines l_1 and l_2 intersect at the point A and the acute angle between l_1 and l_2 is θ .

(a) Write down the coordinates of A.

(1)

(b) Find the value of $\cos \theta$.

(3)

The point X lies on l_1 where $\lambda = 4$.

(c) Find the coordinates of X.

(1)

(d) Find the vector \overrightarrow{AX} .

(2)

(e) Hence, or otherwise, show that $|\overrightarrow{AX}| = 4\sqrt{26}$.

(2)

The point Y lies on l_2 . Given that the vector \overrightarrow{YX} is perpendicular to l_1 ,

(f) find the length of AY, giving your answer to 3 significant figures.

$$a_1 \begin{pmatrix} -6\\4\\-1 \end{pmatrix}$$

b)
$$\cos \theta = \frac{a.b}{10/16/1}$$

Question 4 continued

$$|a| = \sqrt{4^2 + 1^2 + 3^2}$$

$$= \sqrt{26}$$

$$|b| = \sqrt{3^2 + 4^2 + 1^2}$$

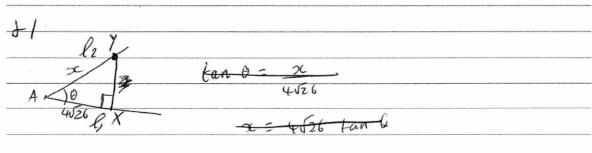
$$= \sqrt{26}$$

$$\cos \theta = \frac{19}{\sqrt{26}\sqrt{26}}$$

$$\frac{=43}{26}$$
Cos 6 = 19

$$\begin{array}{c|c}
 & -6 \\
 & 4 \\
 & + 4 \\
 & 3
\end{array}$$

$$e/\sqrt{16^2+4^2+12^2}=\sqrt{416}=4\sqrt{26}$$



$$\begin{array}{rcl}
\cos \theta &=& 4\sqrt{26} \\
x &=& 4\sqrt{26} \\
\hline
19/26 &=& 27.9 & (3st)
\end{array}$$

5. (a) Find
$$\int \frac{9x+6}{x} dx$$
, $x > 0$.

(2)

(b) Given that y = 8 at x = 1, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(9x+6)\,y^{\frac{1}{3}}}{x}$$

giving your answer in the form $y^2 = g(x)$.

(6)

a)
$$\int 9 + \frac{6}{x} dx$$

= 9x + 61nx +c

b)
$$\int y^{-1/3} dy = \int \frac{9x+6}{x} dx$$

 $\frac{3}{2}y^{1/3} = 9x+6\ln x + c$ $\frac{(1,8)}{(8,1)}$

3(1) = 9(8) + 6 ln(8) + c

$$\frac{3}{2}(8)^{2/3} = 9(1) + 61 \times 1 + C$$

c = -3

$$\frac{3}{5}y^{2/3} = 9x + 61nx - 3$$

 $y^{2/3} = 6x + 4 \ln x - 2$

$$y^2 = (6x + 4 \ln x - 2)^3$$

6. The area A of a circle is increasing at a constant rate of $1.5 \,\mathrm{cm^2 \, s^{-1}}$. Find, to 3 significant figures, the rate at which the radius r of the circle is increasing when the area of the circle is $2 \,\mathrm{cm^2}$.

(5)

$$A = \pi l^2$$

$$= 1.5 \times \frac{1}{2\pi}$$

$$=\frac{1.5}{2\pi}$$

when
$$A=2$$
 $2=\Pi I^2$

$$\frac{dr = 1.5}{dt} = 0.299 \quad 3st$$

7.

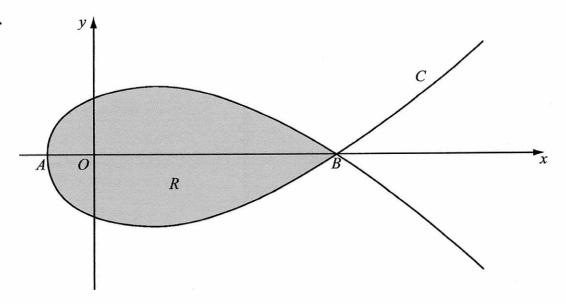


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 5t^2 - 4$$
, $y = t(9 - t^2)$

The curve C cuts the x-axis at the points A and B.

(a) Find the x-coordinate at the point A and the x-coordinate at the point B.

The region R, as shown shaded in Figure 2, is enclosed by the loop of the curve.

(b) Use integration to find the area of R.

(6)

$$0 = t (9-t)^{2}$$

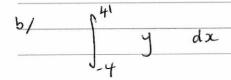
$$= t (3-t)(3+t)$$

$$+ = 0 \ t = 3 \ t = -3$$

$$2c = 5(0)^{2} - 4 \qquad x = 5(3)^{2} - 4$$

$$= -4 \qquad = 41$$

$$A: 1-4 \qquad B: (44,0)$$



Question 7 continued

$$\int_{0}^{3} y \frac{dx}{dt} dt$$

$$\int_{0}^{2} t \left(9 - t^{2} \right) \left(10t \right) dt$$

$$\int_{0}^{3} 10t^{2}(9-t^{2}) dt$$

$$[\frac{90t^3 - 10t^5 + C}{3}]^3$$

8. (a) Using the substitution $x = 2\cos u$, or otherwise, find the exact value of

$$\int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{(4-x^2)}} \, \mathrm{d}x$$

(7)

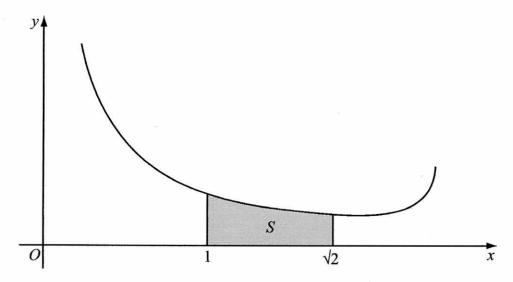


Figure 3

Figure 3 shows a sketch of part of the curve with equation
$$y = \frac{4}{x(4-x^2)^{\frac{1}{4}}}$$
, $0 < x < 2$.

The shaded region S, shown in Figure 3, is bounded by the curve, the x-axis and the lines with equations x = 1 and $x = \sqrt{2}$. The shaded region S is rotated through 2π radians about the x-axis to form a solid of revolution.

(b) Using your answer to part (a), find the exact volume of the solid of revolution formed.

Question 8 continued

$$\int_{3\pi}^{1/4\pi} \frac{-2\sin u}{(+\cos^2 u)(2\sin u)} du$$

$$\int_{4\pi}^{1/4\pi} \frac{-1}{(+\cos^2 u)(2\sin u)} du$$

$$\frac{1}{1} \left(\frac{4}{x(4-x^2)^{\frac{1}{4}}} \right)^2 dx$$

$$\begin{array}{c|c}
 & 16 & dx \\
\hline
 & x^2 \sqrt{(4-x)^2}
\end{array}$$

$$16\pi \int_{-\infty}^{\sqrt{2}} \frac{1}{x^2 \sqrt{(4-x)^2}} dx$$

Q8

(Total 10 marks)

TOTAL FOR PAPER: 75 MARKS

END