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1. Express — - as a single fraction in its simplest form.
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2. Find the exact solutions, in their simplest form, to the equations

(a) e¥?=8
3)
(b) mQ2y +5)=2+In(4-y)
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Figure 1

Figure 1 shows a sketch of part of the graph of y = g(x), where

| vaivskinGumioNOd

gW=3+Vxr2, x>
(a) State the range of g.
1
(b) Find g7!(x) and state its domain.
3
(c) Find the exact value of x for which
gx)=x
@
(d) Hence state the value of a for which
ga)=g'@
)
o/ 9{x) >3
b/u__ M= B e NDe 2 -
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x -2 = v +2 _
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Question 3 continued

N +2 = - — BHx + A
o = & = T +

ez — (-7 2D —wli) (1)
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4. (a) Write 5cos §—2sin 6 in the form Rcos(6 + a), where R and «a are constants,

T
R>0and0£a<5

Give the exact value of R and give the value of a in radians to 3 decimal

places. 3
(b) Show that the equation
5cot2x — 3cosec2x =2
can be rewritten in the form
5cos2x —2sin2x =c¢
where c¢ is a positive constant to be determined. -

(c) Hence or otherwise, solve, for 0 < x <,
Scot2x —3cosec2x =2
giving your answers to 2 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

@)

 Rcos(bta) = Reost cog o - R six 5in X

_ 5 cesG - R snnG
] Reosee =5 R sino=2
- ———— R -
A L AP A
X —{aﬂ—’/‘%‘) K™ =29
I o S R = V27

(29 cos (& +0.38/)
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Question 4 continued
b/ 5 oot 2x - A corec 2k x4 I
T B eps2¢ _ B - 2
D L83 oo —_—
sin 2 )c Sin 2L
_Tgi-g@_s-ZI - 3 = 554 L3¢
. 5. Eos 2k _ 2 s5sm2x = 3 B
c=3 } : -
'__c// J24 Cos(Zx'ro.%B’/) = 3
Cos (2x t038)) = .
2z co0381 = s (=)
2r +0.3% [ = 0.980,5 303
Ax= 0600, .22
=030, 2.46

Turn over

P 4 8 9 4 4 A0 1 1 3 2



Figure 2
Figure 2 shows a sketch of part of the curve C with equation
y=21n(2x+5)—§2£, x>-2.5
The point P with x coordinate —2 lies on C.

(a) Find an equation of the normal to C at P. Write your answer in the form
ax + by = ¢, where a, b and c¢ are integers.

)
The normal to C at P cuts the curve again at the point O, as shown in Figure 2.
(b) Show that the x coordinate of Q is a solution of the equation
x= f_(l) In(2x + 5) — 2
3
The iteration formula
20
X = 11 n2x +35)—2
can be used to find an approximation for the x coordinate of Q.
(c) Taking x, = 2, find the values of x, and x,, giving each answer to 4 decimal placesiz)

when T=-2L Y =2 /_;(7‘2_[;5')?;757_.—_ %(::Z)

of _y= 21In(2x45) -~ Zx
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Question 5 continued
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Question 5 continued
e/ x, = ph(20()t5) -2
o :— ) 1 m 3 5_0 —
I & =22 a(2(AAs)T5) - 2
= | 9917 ] B
L - o . o Q5
(Total 10 marks) l J
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6. Given that a and b are positive constants,
(a) on separate diagrams, sketch the graph with equation
() y=[2x—ad
(ii) y=[2x—a| +b
Show, on each sketch, the coordinates of each point at which the graph crosses or meets
the axes.
@
Given that the equation
3
|2x—a|+b=>x+8
2
has a solution at x = 0 and a solution at x = c,
(b) find ¢ in terms of a.
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Question 6 continued
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7. (1) Given y=2x(x?— 1), show that

(a) % = g(x)(x? — 1)* where g(x) is a function to be determined.

“)
(b) Hence find the set of values of x for which L4 =20
dx
(2)
(i1) Given
x = In(sec2y), 0<y <%
find & as a function of x in its simplest form.
dx 4
@
; / Z. 5
Lo/ g:Q;c(:r —/ )
2 [ =l
U=2x v (2°-1)
du = 9 dv:g{'gz*/)?(Zx)
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= [ p* ,,)'T'( 22 —2)
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Question 7 continued
& x= I (secZq4) -
o j_olﬁxim; j,;}—-——__ 2 ser 2y tan 2y B
d4  sec Zy
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______ _Secly
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tan 2y = |[sec*2q - |
J J

Con 29 =((€*)" - |
d K

7\‘/6“ =

»,

23



peos|

[~ -]
)
e
>

L s i

~V

CvawvsiHiNiSLEMIoNOG

Figure 3

The number of rabbits on an island is modelled by the equation

100e™Y

= ——— i p
P= oo 40, teR120

where P is the number of rabbits, 7 years after they were introduced onto the island.
A sketch of the graph of P against 7 is shown in Figure 3.

(a) Calculate the number of rabbits that were introduced onto the island.
(1)

(b) Find ;if
d 3)

The number of rabbits initially increases, reaching a maximum value P, when 1 =T
(c) Using your answer from part (b), calculate

(1) the value of 7" to 2 decimal places,

(i1) the value of P, to the nearest integer.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

C)

For ¢ > T, the number of rabbits decreases, as shown in Figure 3, but never falls below £,
where £ is a positive constant.

(d) Use the model to state the maximum value of £.

4y

P 4 8 9 4 4 A0 2 6 3 2



Leave i
blank

Question 8 continued
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Question 8 continued
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9. (a) Prove that

sin2x — tanx = tanx cos2x, x#(2n+ 1)90°, net

(b) Given that x # 90° and x # 270°, solve, for 0 < x < 360°,
sin2x — tanx = 3tanx sinx
Give your answers in degrees to one decimal place where appropriate.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

@
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2 Sam K codH.  ~— fan
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Question 9 continued

L,// bow % 785 Do = K fow¥E Sin %

Lan x Co:\zx — 3(—6\/-)& siox 2 = O -

tan x (CQ_S,LC -3 sinx ) =0 [E‘”zx: "23""§

—éaﬂ;(/—*Z‘Siai.xm—?q;a Dc_) = 4 | ~

(yé_@:-ugfi >k(_~2;§:’1:l;ﬁ?“ 3 Y, ”‘I — | l = 0 -

tan _x. = © a=2 b= 3 c=-(
. N L2,
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o . _ 2{z2) B
_________________ . = ~3%I17  =-3-{i1
B e ' §
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