edexcel \#\#

Mark Scheme (Results)

January 2013

GCE Core Mathematics C2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.
You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code US034362
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft , but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
$a M$		\bullet
$a A$	\bullet	
$b M 1$		\bullet
bA1	\bullet	
bB	\bullet	
bM2		\bullet
bA2		\bullet

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the ' 0 ' column when it was meant to be ' 1 ' and all correct.

J anuary 2013 6664 Core Mathematics C2

Mark Scheme

Question Number	Scheme		Marks
1.	$(2-5 x)^{6}$		
	$\left(2^{6}=\right) 64$	Award this when first seen (not 64x ${ }^{0}$)	B1
	$+6 \times(2)^{5}(-5 x)+\frac{6 \times 5}{2}(2)^{4}(-5 x)^{2}$	Attempt binomial expansion with correct structure for at least one of these terms. E.g. a term of the form: $\binom{6}{p} \times(2)^{6-p}(-5 x)^{p} \text { with } p=1 \text { or } p=2$ consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients e.g. ${ }^{6} C_{1} \text { or }\binom{6}{1} \text { or even }\left(\frac{6}{1}\right)$	M1
	-960x	Do not allow +-960x	A1 (first)
	(+)6000x ${ }^{2}$	Allow this to come from ($5 x)^{2}$	A1 (Second)
	Ignore any extra terms and isw e.g. divides all terms by 2 The terms do not have to form a sum i.e. they can be listed with commas or given on separate lines.		
	Special Case - decreasing powers can score M1 with the conditions as above for the second and third terms.		
	$(2-5 x)^{6}=64+\binom{6}{1}\left(2^{5}-5 x\right)+\binom{6}{2}\left(2^{4}+(-5 x)^{2}\right)$ scores B1 only as the powers of 2 and $(-5 x)$ are being added not multiplied.		
Fully correct answer with no working can score full marks. If either the second or third term is correct, the M1 can be implied and the A1 scored for that term.			
			(4)
Way 2		64 and ($1 \pm \ldots .$. - Award when first seen.	B1
	$\left(1-\frac{5 x}{2}\right)^{6}=1-6 \times \frac{5 x}{2}+\frac{6 \times 5}{2}\left(-\frac{5 x}{2}\right)^{2}$	Correct structure for at least one of the underlined terms. E.g. a term of the form: $\binom{6}{p} \times(k x)^{p} \text { with } p=1 \text { or } p=2$ consistently and $k \neq \pm 5$ Condone sign errors. Condoned missing brackets if later work implies correct structure but it must be an expansion of $(1-k x)^{6}$ where $k \neq \pm 5$	M1
	$-960 x$	Do not allow +-960x	A1
	(+)6000x ${ }^{2}$	Allow this to come from $\left(\frac{5 x}{2}\right)^{2}$	A1
			(4)

Question Number	Scheme		Marks
4.			
	$\cos ^{-1}(-0.4)=113.58(\alpha)$	Awrt 114	B1
	$3 x-10=\alpha \Rightarrow x=\frac{\alpha+10}{3}$	Uses their α to find x. Allow $x=\frac{\alpha \pm 10}{3} \operatorname{not} \frac{\alpha}{3} \pm 10$	M1
	Note: If $x=\frac{\alpha \pm 10}{3}$ is not clearly applied from their first angle it may be recovered if applied to their second or third angle.		
	$x=41.2$	Awrt	A1
	$(3 x-10=) 360-\alpha(246.4 . \ldots$.	$360-\alpha$ (can be implied by 246.4...)	M1
	$x=85.5$	Awrt	A1
	$(3 x-10=) 360+\alpha(=473.57 \ldots$.	$360+\alpha$ (Can be implied by 473.57...)	M1
	$x=161.2$	Awrt	A1
	Note 1: Do not penalise incorrect accuracy more than once and penalise it the first time it occurs. E.g if answers are only given to the nearest integer $(41,85,161)$ only the first A mark that would otherwise be scored is lost.		
	Note 2: Ignore any answers outside the range. For extra answers in range in an otherwise fully correct solution lose final A1		
	Note 3: Lack of working means that it is sometimes not clear where their intermediate angles are coming from. In these cases, if the final answers are incorrect score M0.		
	Note 4: Candidates are unlikely to be working in radians deliberately but may have their calculator in radian mode (gives $\alpha=1.98$). In such cases the main scheme should be applied and the method marks are available. If you suspect that the candidate is working in radians correctly then please use the review mechanism and/or consult your team leader.		
Way 2	$\cos ^{-1}(0.4)=66.42(\alpha)$		
	$180-66.42=113.58$	Awrt 114	B1
	$3 x-10=113.58 \Rightarrow x=\frac{113.58+10}{3}$	Uses their 113.58 to find x	M1
	$x=41.2$	Awrt	A1
	$3 x-10=180+\alpha$ (246.4...)	$180+\alpha$	M1
	to give $x=85.5$		A1
	$3 x-10=540-\alpha$ (473.57....)	540- α	M1
	to give $x=161.2$		A1
	Special case - takes 0.4 as -0.4$\cos ^{-1}(0.4)=66.42(\alpha)$		B0
	$3 x-10=66.4 \Rightarrow x=\frac{66.4 \pm 10}{3}$		M1
	$x=41.2$		A0
	$3 x-10=360-\alpha$ (293.6...)		M1
	$x=101.2$		A0
	$3 x-10=360+\alpha$ (426.4....)		M1
	$x=145.5$		A0
			(3/7)

Appendix

3(b) $\text { Way } 2$	$120000 \times(1.05)^{n-1}>200000$	Allow n or $n-1$ and ">", "<", or "=" etc.	M1
	$\log _{1.05} 1.05^{n-1}>\log _{1.05}\left(\frac{5}{3}\right)$	Takes logs correctly Allow n or $n-1$ and ">", "<", or "=" etc. This may be implied by $n-1>\log _{1.05}\left(\frac{5}{3}\right)$ and effectively gets the next A1	M1
	e.g. $\log _{1.05}\left(120000 \times(1.05)^{n-1}\right)=(n-1) \log _{1.05}(120000 \times(1.05))$ would be M0		
	$(n-1>) \log _{1.05} " \frac{5}{3} "$	Allow n or $n-1$ and ">", "<", or "=" etc.	A1
	2024	M1: Identifies a calendar year using their value of n or $n-1$	M1A1
		A1: 2024 only cso	
			(5)

$\begin{aligned} & \text { 3(b) } \\ & \text { MR? } \end{aligned}$	$\frac{120000 \times\left(1-1.05^{n}\right)}{1-1.05}>200000$		M0
	$1.05^{n}>\frac{13}{12}$		
	$\log 1.05^{n}>\log \left(\frac{13}{12}\right)$	Takes logs correctly	M1
	$n>\frac{\log \left(\frac{13}{12}\right)}{\log 1.05}$		A0
	2014	M1: Identifies a calendar year using their value of n or $n-1$	M1A0
		A1: 2024 only	
	Trial \& Improvement for this MR is 0/5		
			(2/5)

4. Way 3	General Solution		
	$\cos ^{-1}(-0.4)=113.58(\alpha)$	Awrt 114	B1
	$3 x-10=360 n+113.58$	$360 n+\alpha$	M1
	$3 x-10=360 n-113.58$	$360 n-\alpha$	M1
	$3 x-10=\alpha \Rightarrow 3 x=\alpha+10$		
	$x=\frac{360 n+123.58}{3}$ or $\frac{360 n-103.58}{3}$	$x=\frac{360 n \pm 113.58 \pm 10}{3}$	M1
	$x=41.2$	Awrt	A1
	$x=85.5$	Awrt	A1
	$x=161.2$	Awrt	A1
			$\mathbf{(7)}$

4.	Special Case 1		
	$\cos (3 x-10)=\cos (3 x)-\cos (10)$		
	$\cos (3 x)=-0.4+\cos (10)$		
	$\cos (3 x)=0.5848 \ldots$		
	$3 x=54.2=\alpha$		
	$x=18.1$		M1
	$3 x=360-\alpha$	$x=101.9$	B0M0A0 so far
	$3 x=360+\alpha$	A60	A
	$x=138.1$	$360+\alpha$	M1
		Awrt	A0
			$\mathbf{(2 / 7)}$

4. Special Case 2-Quite common			
	$\cos ^{-1}(-0.4)=113.58(\alpha)$	Awrt 114	B1
	$3 x-10=\alpha \Rightarrow x=\frac{\alpha+10}{3}$	Uses their α to find x. Allow $x=\frac{\alpha \pm 10}{3}$ not $\frac{\alpha}{3} \pm 10$	M1
	$x=41.2$	Awrt	A1
	$3 x-10=\alpha \Rightarrow 3 x=\alpha+10$		M0
	$3 x=360-(\alpha+10)$		A0
	$x=78.8$		M1
	$3 x=360+(\alpha+10)$	$x=161.2$	Awrt
			A1

4.	Possible scenarios		
	Answers	Marks	
	$41.2,97.9$	B1M1A1M0A0M0A0	
	$41.2,97.9,142.7$	B1M1A1M0A0M0A0	
	$41.2,85.5,97.9$	B1M1A1M1A1M0A0	
	$41.2,97.9,161.2$	B1M1A1M0A0M1A1	
	$41.2,85.5,97.9,142.7$	B1M1A1M1A1M0A0	
	$41.2,85.5,97.9,161.2$	B1M1A1M1A1M1A0	
	$41.2,85.5,97.9,142.7,161.2$	B1M1A1M1A1M1A0	

6 Way 2	$2 \log (x+15)=\log (x+15)^{2}$		B1
	$\log (x+15)^{2}=6+\log x$		
	$2^{6}=64$ or $\log _{2} 64=6$	64 used in the correct context	B1
	$\log _{2} 64+\log _{2} x=\log _{2}(64 x)$	Correct use of $\log a+\log b=\log a b$	M1
	$(x+15)^{2}=64 x$	Removes logs correctly	M1
	$\Rightarrow x^{2}+30 x+225=64 x$	Must see expansion of $(x+15)^{2}$ to score the final mark.	
	$\therefore x^{2}-34 x+225=0 *$	Correct completion to printed answer	A1
			(5)

6 Way 3	$2 \log (x+15)=\log (x+15)^{2}$		B1
	$2^{6}=64$ or $\log _{2} 64=6$	64 used in the correct context	B1
	$(x+15)^{2}=64 x$	$\log _{2}(x+15)^{2}-\log _{2} x=\log _{2} 64$	Correct use oflog $a+\log b=\log a b$ (implied) and removes $\operatorname{logs~correctly.~}$
	$\Rightarrow x^{2}+30 x+225=64 x$	Must see expansion of $(x+15)^{2}$ to score the final mark.	
	$\therefore x^{2}-34 x+225=0 *$	Correct completion to printed answer	A1

$\mathbf{6}$ Way 4	$2 \log (x+15)=\log (x+15)^{2}$		B1
	$\log (x+15)^{2}-\log x=\frac{\log (x+15)^{2}}{\log x}$		M0
	$2^{6}=64$ or $\log _{2} 64=6$	64 used in the correct context	B1
	$\frac{\log _{2}(x+15)^{2}}{\log x}=6 \Rightarrow \frac{(x+15)^{2}}{x}=64$		M0
	$\Rightarrow x^{2}+30 x+225=64 x$		$A 0$
	$\therefore x^{2}-34 x+225=0 *$		$(2 / 5)$

6 Way 5			
	$2 \log (x+15)-\log x=2 \log \left(\frac{x+15}{x}\right)$		M0
	$\log _{2} \frac{(x+15)^{2}}{x}=6$		B0 (first)
	$2^{6}=64$ or $\log _{2} 64=6$	64 used in the correct context	B1
	$\frac{(x+15)^{2}}{x}=64$		M1
	$\Rightarrow x^{2}+30 x+225=64 x$	Incorrect solution	A0
	$\therefore x^{2}-34 x+225=0 *$	$(2 / 5)$	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US034362 January 2013

For more information on Edexcel qualifications, please visit our website

