

Mark Scheme (Results)

January 2013

GCE Core Mathematics C2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code US034362
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.

6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
аМ		•
aA	•	
bM1		•
bA1	•	
bB	•	
bM2		•
bA2		•

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the '0' column when it was meant to be '1' and all correct.

January 2013 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme			
1.	(2-	$(2-5x)^6$		
	$(2^6 =) 64$	Award this when first seen (not $64x^0$)	B1	
	$+6 \times (2)^{5} (-5x) + \frac{6 \times 5}{2} (2)^{4} (-5x)^{2}$	Attempt binomial expansion with correct structure for at least one of these terms. E.g. a term of the form: $\binom{6}{p} \times \left(2\right)^{6-p} \left(-5x\right)^p \text{ with } p = 1 \text{ or } p = 2$ consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients e.g. $\binom{6}{1} \text{ or } \left(\frac{6}{1}\right)$ or even $\left(\frac{6}{1}\right)$	M1	
	-960 <i>x</i>	Do not allow $+-960x$	A1 (first)	
	$(+)6000x^2$	Allow this to come from $(5x)^2$	A1 (Second)	
	The terms do not have to form a sum i.e.	isw e.g. divides all terms by 2 they can be listed with commas or given on te lines.		
		re M1 with the conditions as above for the third terms.		
	$(2-5x)^6 = 64 + {6 \choose 1} (2^5 - 5x) + {6 \choose 2}$	$\left(2^4 + \left(-5x\right)^2\right) \text{ scores B1 only as the}$ being added not multiplied.		
	Fully correct answer with no working can s	score full marks. If either the second or third		
	term is correct, the M1 can be impl	lied and the A1 scored for that term.	(4)	
			(4)	
Way 2	64(1±)	64 and $(1 \pm Award when first seen.$	B1	
	$\left(1 - \frac{5x}{2}\right)^6 = 1 - 6 \times \frac{5x}{2} + \frac{6 \times 5}{2} \left(-\frac{5x}{2}\right)^2$	Correct structure for at least one of the underlined terms. E.g. a term of the form: $\binom{6}{p} \times (kx)^p \text{ with } p = 1 \text{ or } p = 2$ consistently and $k \neq \pm 5$ Condone sign errors. Condoned missing brackets if later work implies correct structure but it must be an expansion of $\left(1 - kx\right)^6 \text{ where } k \neq \pm 5$	M1	
	-960 <i>x</i>	Do not allow $+-960x$	A1	
	$(+)6000x^2$	Allow this to come from $\left(\frac{5x}{2}\right)^2$	A1	
			(4)	

Question Number	Scheme		Marks
2.		I	
(a)	f(1) = a+b-4-3 = 0 or $a+b-7=0$	Attempt $f(\pm 1)$	M1
(4)	a+b=7 *	Must be $f(1)$ and $= 0$ needs to be seen	A1
		T	(2)
			(2)
(b)	$f(-2) = a(-2)^3 + b(-2)^2 - 4(-2) - 3 = 9$	Attempt $f(\pm 2)$ and uses $f(\pm 2) = 9$	M1
	-8a + 4b + 8 - 3 = 9	Correct equation with exponents of (-2) removed	A1
	(-8a + 4b = 4)		
	Solves the given equation from part (a) and their equation in a and b from part (b) as far as $a =$ or $b =$		M1
	a = 2 and $b = 5$	Both correct	A1
	Attempts at trial and improvement in (by values for a and b where $a + b = 7$ and so along with $x = \pm 2$ and sets = 9. For complet to be correct allow 4/4. For incomplete of M1 only. If in doubt consult your team I	substitute their values into the cubic etion to $a = 2$ and $b = 5$ fully shown r incorrect solutions allow the first	
			(4)
	7 5		[6]
	Long Divis		
	$(ax^3 + bx^2 - 4x - 3) \div (x - 4x - 3)$ where p and q are in terms	,	N/1
(a)	and sets their remainder $= 0$		M1
	NB Quotient = $ax^2 + (a +$	(a+b)x+(a+b-4)	
	a + b = 7		A1
			(2)
	$\left(ax^3+bx^2-4x-3\right)\div\left(x+\frac{1}{2}\right)$	$2) = ax^2 + px + q$	
	where p and q are in terms of	f a or b or both	
(b)	and sets their remainder =	9	M1
	NB Quotient = $ax^2 + (b-2)$	(2a)x + (4a - 4 - 2b)	
	4b - 8a + 5		A1
	Follow scheme for	final 2 marks	

Question Number		Scheme	Marks	
3.				
(a)	$120000 \times (1.05)^3 = 138915 *$	Or $120000 \times 1.05 \times 1.05 \times 1.05 = 138915$ Or 120000 , 126000 , 132000 , 138915 Or $a = 120000$ and $a \times (1.05)^3 = 138915$	B1	
				(1)
(b)	$120000 \times (1.05)^{n-1} > 200000$	Allow n or $n - 1$ and ">", "<", or "=" etc.	M1	
	$\log 1.05^{n-1} > \log \left(\frac{5}{3}\right)$	Takes logs correctly Allow n or $n-1$ and ">", "<", or "=" etc.	M1	
	$(n-1>)\frac{\log\left(\frac{5}{3}\right)}{\log 1.05} \text{ or equivalent}$ $\text{e.g } (n>)\frac{\log\left(\frac{7}{4}\right)}{\log 1.05}$	Allow n or $n - 1$ and ">", "<", or "=" etc. Allow $1.\dot{6}$ or awrt 1.67 for $5/3$.	A1	
	2024	M1: Identifies a calendar year using their value of <i>n</i> or <i>n</i> - 1 A1: 2024 only cso	M1A1	
	2024 witl	h no working = no marks		
		iking logs base 1.05 and mis-read as total profit		
				(5)
	$\frac{a(1-r^n)}{1-r} = \frac{120000(1-1.05^{11})}{1-1.05}$	M1: Correct sum formula with $n = 10$, 11 or 12		
(c)	$\frac{1-r}{1-1.05}$	A1: Correct numerical expression with $n = 11$	M1 A1	
	1704814	Cao (Allow 1704814.00)	A1	
				(3)
				[9]
		or trial/improvement in (b)		
	$U_{10} = 186\ 159.39,$	$U_{11} = 195 \ 467.36, U_{12} = 205 \ 240.72$		
	(all the	1 th or 12 th terms correctly using a common ratio of 1.05 terms need not be listed)	M1	
		gression correctly to reach a term > 200 000 eaches 195 467.36 – Hence the next year)	M1	
		wrt 195 500 and a "12 th " term of awrt 205 200	A1	
	Uses their numbe	r of terms to identify a calendar year	M1	
		2024	A1	
	If you are not sure how to awa	ard the marks please consult your Team Leader		(5)

Question Number	Scheme		Marks
4.			
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	$3x - 10 = \alpha \Rightarrow x = \frac{\alpha + 10}{3}$	Uses their α to find x . Allow $x = \frac{\alpha \pm 10}{3} \mathbf{not} \frac{\alpha}{3} \pm 10$	M1
	Note: If $x = \frac{\alpha \pm 10}{3}$ is not clearly applied from		
	applied to their second or third angle. $x = 41.2$	Awrt	A1
	x - 41.2	Awit	Al
	$(3x-10=)360-\alpha$ (246.4)	$360 - \alpha$ (can be implied by 246.4)	M1
	x = 85.5	Awrt	A1
	$(3x-10=)360+\alpha (=473.57)$	$360 + \alpha$ (Can be implied by 473.57)	M1
	x = 161.2	Awrt	A1
	Note 1: Do not penalise incorrect accuracy mo	ore than once and penalise it the first time it arest integer (41, 85, 161) only the first A mark	
	fully correct solution lose final A1	Tot extra answers in range in an outerwise	
	Note 3: Lack of working means that it is some are coming from. In these cases, if the final and	times not clear where their intermediate angles swers are incorrect score M0.	
	Note 4: Candidates are unlikely to be working calculator in radian mode (gives $\alpha = 1.98$). In and the method marks are available. If you sus correctly then please use the review mechanism	such cases the main scheme should be applied pect that the candidate is working in radians	
Way 2	$\cos^{-1}(0.4) = 66.42 \ (\alpha)$		
<u> </u>	180 – 66.42 = 113.58	Awrt 114	B1
	$3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$	Uses their 113.58 to find x	M1
	x = 41.2	Awrt	A1
	$3x-10=180+\alpha$ (246.4)	$180 + \alpha$	M1
	to give $x = 85.5$		A1
	$3x-10 = 540 - \alpha (473.57)$	540 - α	M1
	to give $x = 161.2$		A1
	Special case - t	akes 0.4 as -0.4	
	$\cos^{-1}(0.4) = 66.42 \ (\alpha)$ $3x - 10 = 66.4 \Rightarrow x = \frac{66.4 \pm 10}{3}$		В0
			M1
			A0
	$3x-10=360-\alpha$ (293.6)		M1
	x = 101.2		A0
	$3x-10=360+\alpha$ (426.4)		M1
	x = 145.5		A0
			(3/7)

Question Number	Scheme		Marks
5.			
(a)	Parts (i) and (ii) are likely to be so	lved together so mark as one part	
(i)	The centre is at (10, 12)	B1: $x = 10$ B1: $y = 12$	B1 B1
(ii)	Uses $(x-10)^2 + (y-12)^2 =$	$= -195 + 100 + 144 \Rightarrow r = \dots$	M1
	Completes the square for both $(x \pm "10")^2 \pm a$ and $(y \pm "12")$ Allow slips in obtaining their	$^{2} \pm b$ and $+195 = 0, (a, b \neq 0)$	
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for <i>r</i> including the square root and can implied by a correct value for <i>r</i>	A1
	r=7	Not $r = \pm 7$ unless – 7 is rejected	A1
			(5)
(a)	Compares the given equation with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write	B1: <i>x</i> = 10	B1B1
Way 2	down centre $(-g, -f)$ i.e. $(10, 12)$	B1: $y = 12$	
vvay 2	Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$		M1
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for <i>r</i>	A1
	r = 7		A1
			(5)
	Note that although the marks for the come from correct work. E.g. $(x+10)$ (10, 12) scores B0 B0 but could score special case. Similarly $(x+10)^2$, $(y+10)^2$	$(y+12)^2$ giving a centre of the M1A1ftA1ft for the radius as a $(-12)^2$ giving a centre of (-10, 12)	
	scores B0 B1, $(x-10)^2$, $(y+12)^2$ giving		
	but both could score M1A1ftA1ft for	the radius as a special case also.	
(b)	$MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$	Correct use of Pythagoras	M1
	$MN\left(=\sqrt{625}\right)=25$		A1 (2)
(c)	$NP = \sqrt{("25"^2 - "7"^2)}$	$NP = \sqrt{(MN^2 - r^2)}$	M1
	$NP = \sqrt{(25^2 + 7^2)}$ is	M0 (Quite common)	
	$NP\left(=\sqrt{576}\right)=24$		A1
			(2)
(c) Way 2	$\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25" \sin(N)$	VMP) Correct strategy for finding NP	M1
V	NP = 24		A1
			(2)
			[9]

Question Number	Sch	eme	Marks	
6.				
(a)	$2\log(x+15) = \log(x+15)^2$		B1	
	$\log(x+15)^2 - \log x = \log \frac{(x+15)^2}{x}$	Correct use of $\log a - \log b = \log \frac{a}{b}$	M1	
	$2\log(x+15) - \log x = 6$	$\Rightarrow \log\left(\frac{\left(x+15\right)^2}{x}\right) = 6$		
	with no incorrect work so	cores B1M1together		
	$2\log_2(x+15) - \log_2 x =$	$=2\log_2\frac{(x+15)}{x}$ is M0		
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1	
	$\log_2 \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$	Removes logs correctly	M1	
	$2\log(x+15) - \log x = 6 \Rightarrow \log(x+15)$	$(-15)^2 - \log x = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$		
		the first 4 marks		
	This method mark should only be awarded way. Some examples are below,			
	$\frac{\log(x+15)^2}{\log x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6\mathbf{M0}$	$\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6\mathbf{M0}$		
	$\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = \log_2 6\mathbf{M}$			
	$\log \frac{(x+15)^{2}}{x} = 6 \Rightarrow \frac{(x+15)^{2}}{x} = 6^{2} \text{ M0}$	$\log\left(\frac{(x+15)}{x}\right)^2 = 6 \Rightarrow \left(\frac{(x+15)}{x}\right)^2 = 64 \mathbf{M1}$		
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to		
	$or x + 30 + 225x^{-1} = 64$	score the final mark.		
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer with no errors but allow recovery from 'invisible' brackets e.g. $x+15^2 \rightarrow x^2+30x+225$	A1	
		-	((5)
(b)	$(x-25)(x-9) = 0 \Rightarrow x = 25 \text{ or } x = 9$	M1: Correct attempt to solve the given quadratic as far as $x =$ It must be an attempt at solving the given quadratic but allow mis-copy e.g. 255 for 225	M1 A1	
		A1: Both 25 and 9	((2)
				<u>(2)</u> [7]
				<u></u>
	See appendix for some alternative co	orrect and incorrect methods for (a)		

Question Number	Schen	ne	Marks
7.			
(a)	$9^2 = 4^2 + 6^2 - 2 \times 4 \times 6 \cos \alpha \Rightarrow \cos \alpha =$	leading to a value for cos α	M1
	$\cos \alpha = \frac{4^2 + 6^2 - 9^2}{2 \times 4 \times 6} \left(= -\frac{29}{48} = -0.604 \right)$		
	$\alpha = 2.22$ *	Cso (2.22 must be seen here)	A1
	(NB $\alpha = 2.219516005$)		(2)
(a) Way 2	$XY^2 = 4^2 + 6^2 - 2 \times 4 \times 6\cos 2.22 \Rightarrow XY^2$	Correct use of cosine rule leading to a value for XY^2	M1
	$XY^2 = 81.01$		
	XY = 9.00		A1
			(2)
(b)	$2\pi - 2.22 (= 4.06366)$	$2\pi - 2.22$ or awrt 4.06 or $2\pi - 2.2$ or awrt 4.08 (May be implied)	B1
	$\frac{1}{2} \times 4^2 \times "4.06"$	Correct method for major sector area. Allow $\pi - 2.22$ for the major sector angle.	M1
	32.5	Awrt 32.5	A1
	Finding the minor sector a	area here (17.8) is 0/3	(3)
(b) Way2	Circle – Mino	or sector	
	$\pi \times 4^2$	Correct expression for circle area	B1
	$\pi \times 4^{2}$ $\pi \times 4^{2} - \frac{1}{2} \times 4^{2} \times 2.22 = 32.5$	Correct method for circle - minor sector area	M1
	= 32.5	Awrt 32.5	A1
			(3)
(c)	Area of triangle = $\frac{1}{2} \times 4 \times 6 \times \sin 2.22 (= 9.56)$	Correct expression for the area of triangle XYZ (allow 2.2 or awrt 2.22)	B1
	So area required = "9.56" + "32.5"	Their Triangle XYZ (Not triangle ZXW) + (part (b) answer or correct attempt at major sector)	M1
	$= 42.1 \text{ cm}^2 \text{ or } 42.0 \text{ cm}^2$	Awrt 42.1 or 42.0 (Or just 42)	A1
			(3)
	Note: The minor sector area (17.76) + the triangle answer to (d) – beware!	e (9.56) = 27.32 which looks like the	
(d)	Arc length = $4 \times 4.06 (= 16.24)$	M1: $4 \times their(2\pi - 2.22)$	M1A1ft
(u)	Or $8\pi - 4 \times 2.22$	Or circumference – minor arc	111111111111111111111111111111111111111
	A1: Correct ft expression		N/1
	Perimeter = $ZY + WY + Arc Length$	9 + 2 + Any Arc	M1
	Perimeter = 27.2 or 27.3	Awrt 27.2 or awrt 27.3	A1
	Note the order of marks on Epen is M correspond so that the second mark on E		
			(4)
	(Generally do not apply isw in this question and mar subsequently round	ed incorrectly)	[12]
	In this question we will need to be careful with labe be marked as labelled by the candidate.	lling as each part has clear demands and must	

Question Number	Scheme		Marks
8.	$y = 6 - 3x - \frac{4}{x^3}$ $M1: x^n \to x^{n-1}$		
(a)	1 dy 12		M1 A1
	$\frac{dy}{dx} = 0 \Rightarrow -3 + \frac{12}{x^4} = 0 \Rightarrow x = \dots \text{ or}$ $\frac{dy}{dx} = -3 + \frac{12}{\sqrt{2}^4}$	y' = 0 and attempt to solve for $xMay be implied by \frac{dy}{dx} = -3 + \frac{12}{x^4} = 0 \Rightarrow \frac{12}{x^4} = 3 \Rightarrow x = \dots \text{ or} Substitutes x = \sqrt{2} into their y'$	M1
	So $x^4 = 4$ and $x = \sqrt{2}$ or $\frac{dy}{dx} = -3 + \frac{12}{\left(\sqrt{2}\right)^4} \text{ or } -3 + 12\left(\sqrt{2}\right)^{-4} = 0$	Correct completion to printed answer with no errors by solving their $y' = 0$ or substituting $x = \sqrt{2}$ into their y'	A1
	The minimum for verification is as in the sch	_	
	Do not allow $x^4 = 4 \Rightarrow x = 4$	$=1.41=\sqrt{2}$ for the final A1	(4
(b)	$x = -\sqrt{2}$	Awrt -1.41	B1
(c)	$\frac{d^2 y}{dx^2} = \frac{-48}{x^5} \text{ or } -48x^{-5}$	Follow through their first derivative from part (a)	B1ft
(d)	An appreciation that either $y'' > 0 \Rightarrow$ a minimum or $y'' < 0 \Rightarrow$ a maximum	A generous mark that is independent of any previous work	B1
	Maximum at P as $y'' < 0$	Cso	B1
		k. y'' need not be evaluated but must be	
		or to $\sqrt{2}$ and negative or < 0 and maximum. ory statements (NB allow y'' = awrt-8 or -9)	
	Minimum at Q as $y'' > 0$	Cso	B1
	Need a fully correct solution for this mark. y'' need not be evaluated but must be correct and part (b) must be correct and there must be reference to P or to $-\sqrt{2}$ and positive or > 0 and minimum. There must be no incorrect or contradictory statements (NB allow $y'' = \text{awrt 8 or 9}$)		
			(3
			[9
	Other methods for identifying the nature of the for finding values of <i>y</i> or dy/dx either side of B1's for fully correct solutions to identify the		

9.	Question Number	Scheme			Marks
Special case 6.27 and 3.63 scores B1B0 (2)	9.	y = 27 - 2x	$-9\sqrt{x}-\frac{16}{x^2}$		
(b) $\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$ B1 $\{(0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856)\}$ Need {} or implied M1A1ft (0+0) may be implied if omitted and follow through their f(2) and f(3) in an otherwise correct expression and allow one missing or mis-copied term in the 2() bracket for the method mark $\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856)$ Unless followed by an answer that implies correct (missing) brackets, scores BIMIA0A0 (Usually implied by an answer of 45.676) $\frac{1}{2} \times 0.5\{(0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856)\}$ $= \frac{1}{4} \times 45.676$ $= 11.42$ cao A1 Separate trapezia may be used: B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct) NB $\frac{1}{2} \times 0.5\{(0+0) + 2(0 + 5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0)\}$ Scores BIM0A0A0 Correct answer with no working scores 0/4 $\frac{M1: x^n \rightarrow x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ A1: $-6x^{\frac{1}{2}}$ A1: $+16x^{-1}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $\frac{(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})}$ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 - 36 but you may need to check both their values if the integration has errors. (a) 12 Cao (Penalise -12) A1	(a)			Awrt in each case	B1, B1
(b) $\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$		Special case 6.27 an	<u>d</u> 3.63 scores B1B0		
					(2)
(0+0) may be implied if omitted and follow through their f(2) and f(3) in an otherwise correct expression and allow one missing or mis-copied term in the $2()$ bracket for the method mark $\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856)$ Unless followed by an answer that implies correct (missing) brackets, scores B1M1A0A0 (Usually implied by an answer of 45.676) $\frac{1}{2} \times 0.5 \left\{ (0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856) \right\}$ $= \frac{1}{4} \times 45.676$ $= 11.42$ cao A1 Separate trapezia may be used: B1 for 0.25 , M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct) NB $\frac{1}{2} \times 0.5 \left\{ (0+0) + 2(0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0) \right\}$ Scores B1M0A0A0 Correct answer with no working scores $0/4$ $\frac{M1: x^n \rightarrow x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ A1: $-6x^{\frac{1}{2}}$ A1: $-6x^{$	(b)	$\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$			B1
otherwise correct expression and allow one missing or mis-copied term in the $2()$ bracket for the method mark $\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856)$ Unless followed by an answer that implies correct (missing) brackets, scores $BIMIAOAO$ (Usually implied by an answer of 45.676) $\frac{1}{2} \times 0.5\{(0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856)\}$ $= \frac{1}{4} \times 45.676$ $= 11.42 \qquad \text{cao} \qquad \text{A1}$ Separate trapezia may be used: B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct) NB $\frac{1}{2} \times 0.5\{(0+0) + 2(0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0)\}$ Scores B1M0A0A0 Correct answer with no working scores $0/4$ $\frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ $\frac{A1: -6x^2}{A1: +16x^{-1}}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $\frac{(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})}$ $Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 – 36 but you may need to check both their values if the integration has errors. = (48 - 36) 12 Cao (Penalise -12) A1$		\dots { $(0+0)+2(5.866+"6.272"+5.210+$	+"3.634"+1.856)}		M1A1ft
$\frac{1}{2} \times 0.5(0+0) + 2\left(5.866 + "6.272" + 5.210 + "3.634" + 1.856\right)}{\text{Unless followed by an answer that implies correct (missing) brackets, scores}} \\ \frac{1}{2} \times 0.5\left\{(0+0) + 2\left(5.866 + "6.272" + 5.210 + "3.634" + 1.856\right)\right\}}{\frac{1}{2} \times 0.5\left\{(0+0) + 2\left(5.866 + "6.272" + 5.210 + "3.634" + 1.856\right)\right\}}{\frac{1}{4} \times 45.676} \\ = 11.42 \qquad \text{cao} \qquad \text{A1}$ Separate trapezia may be used: B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct) NB $\frac{1}{2} \times 0.5\left\{(0+0) + 2\left(0 + 5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0\right)\right\}$ Scores B1M0A0A0 Correct answer with no working scores $0/4$ $\frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ A1: $-6x^{\frac{1}{2}}$ A1: $+16x^{-1}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $\frac{(27(4) - (4)^2 - 6(4)^{\frac{1}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{1}{2}} + 16(1)^{-1})}$ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 – 36 but you may need to check both their values if the integration has errors. $= (48 - 36)$ 12 Cao (Penalise -12) A1		(0+0) may be implied if omitted and f	follow through their	f(2) and $f(3)$ in an	
$\frac{\frac{1}{2} \times 0.5(0+0) + 2\left(5.866 + "6.272" + 5.210 + "3.634" + 1.856\right)}{\text{Unless followed by an answer that implies correct (missing) brackets, scores}} \\ \frac{1}{2} \times 0.5\left\{(0+0) + 2\left(5.866 + "6.272" + 5.210 + "3.634" + 1.856\right)\right\}}{\frac{1}{2} \times 0.5\left\{(0+0) + 2\left(5.866 + "6.272" + 5.210 + "3.634" + 1.856\right)\right\}}{\frac{1}{4} \times 45.676}} \\ = 11.42 & \text{cao} & \text{A1} \\ \text{Separate trapezia may be used : B1 for } 0.25, \text{ M1 for } \frac{1}{2}h(a+b) \text{ used } 5 \text{ or } 6 \text{ times (and A1ft all correct)}} \\ \text{NB} & \frac{1}{2} \times 0.5\left\{(0+0) + 2\left(0 + 5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0\right)\right\}} \\ \text{Scores B1M0A0A0} \\ \text{Correct answer with no working scores } 0/4 \\ \hline & \frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2} \\ \hline A1: +16x^{-1} \\ \text{Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen} \\ \hline & \frac{(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})} \\ \hline & \frac{Attempt to subtract either way round using the limits 4 and 1.}{\text{Dependent on the previous M1. May be implied by 48 - 36 but you may need to check both their values if the integration has errors.} \\ \hline & = (48 - 36) \\ \hline & \text{Cao (Penalise -12)} \\ \hline & \text{A1} \\ \hline \end{cases}$		otherwise correct expression and allow	one missing or mis-	-copied term in the	
Unless followed by an answer that implies correct (missing) brackets, scores B1M1A0A0 (Usually implied by an answer of 45.676) $\frac{1}{2} \times 0.5 \left\{ (0+0) + 2 \left(5.866 + "6.272" + 5.210 + "3.634" + 1.856 \right) \right\}$ $= \frac{1}{4} \times 45.676$ $= 11.42 \qquad \text{cao} \qquad \text{A1}$ Separate trapezia may be used: B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct) NB $\frac{1}{2} \times 0.5 \left\{ (0+0) + 2 \left(0 + 5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0 \right) \right\}$ Scores B1M0A0A0 Correct answer with no working scores 0/4 $\frac{M1: x^n \rightarrow x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ $\frac{A1: -6x^{\frac{3}{2}}}{A1: +16x^{-1}}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $\frac{(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})}$ $Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 – 36 but you may need to check both their values if the integration has errors. = (48 - 36) 12 Cao (Penalise -12) A1$		2() bracket for	the method mark		
B1M1A0A0 (Usually implied by an answer of 45.676) $\frac{1}{2} \times 0.5 \{ (0+0) + 2 (5.866 + "6.272" + 5.210 + "3.634" + 1.856) \} $ $= \frac{1}{4} \times 45.676$ $= 11.42$ cao A1 Separate trapezia may be used : B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct) NB $\frac{1}{2} \times 0.5 \{ (0+0) + 2 (0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0) \} $ Scores B1M0A0A0 Correct answer with no working scores 0/4 $\int y dx = 27x - x^2 - 6x^{\frac{3}{2}} + 16x^{-1} (+c) $ $\frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2} $ M1A1A1A1 Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1}) $ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 - 36 but you may need to check both their values if the integration has errors. 12		$\frac{1}{2} \times 0.5(0+0) + 2(5.866 + 6.2)$	272"+ 5.210 + "3.634	4"+1.856)	
$= \frac{1}{4} \times 45.676$ $= 11.42 \qquad \text{cao} \qquad \text{A1}$ Separate trapezia may be used: B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct) NB $\frac{1}{2} \times 0.5\{(0+0) + 2(0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0)\}$ Scores B1M0A0A0 Correct answer with no working scores 0/4 $\frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ $\frac{A1: -6x^{\frac{3}{2}}}{A1: +16x^{-1}}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $\frac{(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})}$ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 – 36 but you may need to check both their values if the integration has errors. $= (48 - 36)$ 12 Cao (Penalise -12) A1		_		·	
		$\frac{1}{2} \times 0.5 \{ (0+0) + 2 (5.866 + 6.866) \}$	272"+ 5.210 + "3.63	4"+1.856)}	
		1	5 676		
Separate trapezia may be used: B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6 times (and A1ft all correct) NB $\frac{1}{2} \times 0.5 \{ (0+0) + 2(0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0) \}$ Scores B1M0A0A0 Correct answer with no working scores 0/4 $\frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ $\frac{A1: -6x^{\frac{3}{2}}}{A1: +16x^{-1}}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $\frac{(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})}$ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 - 36 but you may need to check both their values if the integration has errors. $= (48 - 36)$ Cao (Penalise -12) A1 (6)		$=\frac{-4}{4}$	53.070		
times (and A1ft all correct) NB $\frac{1}{2} \times 0.5 \{ (0+0) + 2(0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0) \}$ Scores B1M0A0A0 Correct answer with no working scores 0/4 $\frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ $\frac{A1: -6x^{\frac{1}{2}}}{A1: +16x^{-1}}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $\frac{(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})}$ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 - 36 but you may need to check both their values if the integration has errors. $= (48 - 36)$ Cao (Penalise -12) A1 (6)		= 11.42	cao		A1
times (and A1ft all correct) NB $\frac{1}{2} \times 0.5 \{ (0+0) + 2(0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0) \}$ Scores B1M0A0A0 Correct answer with no working scores 0/4 $\frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2}$ $\frac{A1: -6x^{\frac{1}{2}}}{A1: +16x^{-1}}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $\frac{(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})}{-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})}$ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 - 36 but you may need to check both their values if the integration has errors. $= (48 - 36)$ Cao (Penalise -12) A1 (6)		Separate trapezia may be used: B1 for	0.25, M1 for $\frac{1}{2}h(a+1)$	- <i>b</i>) used 5 or 6	
NB $\frac{1}{2} \times 0.5 \{ (0+0) + 2 (0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0) \}$ Scores B1M0A0A0 Correct answer with no working scores 0/4 $\int y dx = 27x - x^2 - 6x^{\frac{3}{2}} + 16x^{-1}(+c) = \frac{M1: x^n \to x^{n+1} \text{ on any term}}{A1: 27x - x^2} = \frac{A1: -6x^{\frac{3}{2}}}{A1: +16x^{-1}} = \frac{Attempt to subtract either way round using the limits 4 and 1.}{Dependent on the previous M1. May be implied by 48 - 36 but you may need to check both their values if the integration has errors.} = (48 - 36) 12 Cao (Penalise -12) A1 (6)$					
Correct answer with no working scores 0/4 Scores B1M0A0A0			272"+ 5.210 + "3.634	4"+1.856+0)}	
(c)		_			
(c)		Correct answer	with no working sco	res 0/4	
$\int y dx = 27x - x^2 - 6x^{\frac{3}{2}} + 16x^{-1} (+c)$ $A1: 27x - x^2$ $A1: -6x^{\frac{3}{2}}$ $A1: +16x^{-1}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $(27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1})$ $-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})$ $-(27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1})$ $-(28 - 36)$ $-(28 - 36)$ $-(28 - 36)$ $-(28 - 36)$ $-(28 - 36)$ $-(28 - 36)$ $-(28 - 36)$ $-(28 - 36)$ $-(28 - 36)$ $-(38 $					(4)
(c)			M1: $x^n \to x^{n+1}$ on	any term	
(c)		3	A1: $27x - x^2$		
(c) A1: $+16x^{-1}$ Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $ \begin{pmatrix} 27(4)-(4)^2-6(4)^{\frac{3}{2}}+16(4)^{-1} \\ -(27(1)-(1)^2-6(1)^{\frac{3}{2}}+16(1)^{-1} \end{pmatrix} $ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 – 36 but you may need to check both their values if the integration has errors. $ = (48-36) $ 12 Cao (Penalise -12) A1 (6)		$\int y dx = 27x - x^2 - 6x^2 + 16x^{-1} (+c)$			M1A1A1A1
Accept any correct and possibly unsimplified versions for the terms and mark in this order on Epen $ \begin{pmatrix} 27(4) - (4)^2 - 6(4)^{\frac{3}{2}} + 16(4)^{-1} \\ - (27(1) - (1)^2 - 6(1)^{\frac{3}{2}} + 16(1)^{-1} \end{pmatrix} $ Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by 48 – 36 but you may need to check both their values if the integration has errors. $ = (48 - 36) $ $ = (48 - 36) $ Cao (Penalise -12) A1 (6)					
Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by $48 - 36$ but you may need to check both their values if the integration has errors. $= (48 - 36)$ 12 Cao (Penalise -12) Attempt to subtract either way round using the limits 4 and 1. Dependent on the previous M1. May be implied by $48 - 36$ but you may need to check both their values if the integration has errors.	(c)			he terms and mark	
	(0)	in this order on Epen	Attempt to subtract	ot oithor way	
integration has errors. = (48 – 36)		$(27(4)-(4)^2-6(4)^{\frac{3}{2}}+16(4)^{-1})$	_	•	
= (48 – 36) 12 Cao (Penalise -12) A1 (6)		$-\left(27(1)-(1)^2-6(1)^{\frac{3}{2}}+16(1)^{-1}\right)$	be implied by 48 – need to check both	36 but you may their values if the	dM1
12 Cao (Penalise -12) A1 (6)		_ (10	·	ors.	
(6)		 	· ·	<u> </u>	Δ1
		12	Cao (i chanse -12	·)	

Appendix

3(b) Way 2	$120000 \times (1.05)^{n-1} > 200000$	Allow n or $n - 1$ and ">", "<", or "=" etc.	M1
	$\log_{1.05} 1.05^{n-1} > \log_{1.05} \left(\frac{5}{3}\right)$	Takes logs correctly Allow n or $n-1$ and ">", "<", or "=" etc. This may be implied by $n-1 > \log_{1.05} \left(\frac{5}{3}\right)$ and effectively gets the next A1	M1
	e.g. $\log_{1.05} \left(120000 \times (1.05)^{n-1} \right) = \left(n \right)$	-1) $\log_{1.05}(120000 \times (1.05))$ would be M0	
	$(n-1>)\log_{1.05}"\frac{5}{3}"$	Allow n or $n - 1$ and ">", "<", or "=" etc.	A1
	2024	M1: Identifies a calendar year using their value of <i>n</i> or <i>n</i> - 1 A1: 2024 only cso	M1A1
			(5)

3(b) MR?	$\frac{120000 \times (1 - 1.05^n)}{1 - 1.05} > 200000$		M0
	$1.05^n > \frac{13}{12}$		
	$\log 1.05^n > \log \left(\frac{13}{12}\right)$	Takes logs correctly	M1
	$n > \frac{\log\left(\frac{13}{12}\right)}{\log 1.05}$		A0
	2014	M1: Identifies a calendar year using their value of <i>n</i> or <i>n</i> - 1 A1: 2024 only	M1A0
	Trial & Imp	rovement for this MR is 0/5	
	_	·	(2/5)

4. Way 3	General Solution		
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	3x - 10 = 360n + 113.58	$360n + \alpha$	M1
	3x - 10 = 360n - 113.58	$360n-\alpha$	M1
	$3x - 10 = \alpha \Rightarrow 3x = \alpha + 10$		
	$x = \frac{360n + 123.58}{3} \text{ or } \frac{360n - 103.58}{3}$	$x = \frac{360n \pm 113.58 \pm 10}{3}$	M1
	x = 41.2	Awrt	A1
	x = 85.5	Awrt	A1
	x = 161.2	Awrt	A1
			(7)

4.	Spe	ecial Case 1	
	$\cos(3x-10) = \cos(3x) - \cos(10)$		
	$\cos(3x) = -0.4 + \cos(10)$		
	$\cos(3x) = 0.5848$		
	$3x = 54.2 = \alpha$		
	x = 18.1		
	BOI	M0A0 so far	
	$3x = 360 - \alpha$	$360-\alpha$	M1
	x = 101.9	Awrt	A0
	$3x = 360 + \alpha$	$360 + \alpha$	M1
	x = 138.1	Awrt	A0
			(2/7)

4.	Special Case 2 – Quite common		
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1
	$3x - 10 = \alpha \Rightarrow x = \frac{\alpha + 10}{3}$	Uses their α to find x . Allow $x = \frac{\alpha \pm 10}{3} \text{not } \frac{\alpha}{3} \pm 10$	M1
	x = 41.2	Awrt	A1
	$3x - 10 = \alpha \Rightarrow 3x = \alpha + 10$		
	$3x = 360 - (\alpha + 10)$		M0
	x = 78.8		A0
	$3x = 360 + \left(\alpha + 10\right)$		M1
	x = 161.2	Awrt	A1
			(5/7)

4.	Pos		
	Answers	Marks	
	41.2, 97.9	B1M1A1M0A0M0A0	
	41.2, 97.9, 142.7	B1M1A1M0A0M0A0	
	41.2, 85.5, 97.9	B1M1A1M1A1M0A0	
	41.2, 97.9, 161.2	B1M1A1M0A0M1A1	
	41.2, 85.5, 97.9, 142.7	B1M1A1M1A1M0A0	
	41.2, 85.5, 97.9, 161.2	B1M1A1M1A1M1A0	
	41.2, 85.5, 97.9, 142.7, 161.2	B1M1A1M1A1M1A0	

6 Way 2	$2\log(x+15) = \log(x+15)^2$		B1
	$\log(x+15)^2 = 6 + \log x$		
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\log_2 64 + \log_2 x = \log_2 \left(64x\right)$	Correct use of $\log a + \log b = \log ab$	M1
	$\left(x+15\right)^2 = 64x$	Removes logs correctly	M1
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to score the final mark.	
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer	A1
			(5)

6 Way 3	$2\log(x+15) = \log(x+15)^2$		B1
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\log_2(x+15)^2 - \log_2 x = \log_2 64$		
	$\left(x+15\right)^2 = 64x$	Correct use of $\log a + \log b = \log ab$ (implied) and removes logs correctly.	M1, M1
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to score the final mark.	
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer	A1
			(5)

6 Way 4	$2\log(x+15) = \log(x+15)^2$		B1	
	$\log(x+15)^{2} - \log x = \frac{\log(x+15)^{2}}{\log x}$		МО	
	$2^6 = 64 or \log_2 64 = 6$	64 used in the correct context	<i>B1</i>	
	$\frac{\log_2(x+15)^2}{\log x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$		МО	
	$\Rightarrow x^2 + 30x + 225 = 64x$			
	$\therefore x^2 - 34x + 225 = 0 *$		A0	
			(.	2/5)

6 Way 5			
	$2\log(x+15) - \log x = 2\log\left(\frac{x+15}{x}\right)$		M0
	$\log_2 \frac{\left(x+15\right)^2}{x} = 6$		B0 (first)
	$2^6 = 64 \text{ or } \log_2 64 = 6$	64 used in the correct context	B1
	$\frac{\left(x+15\right)^2}{x} = 64$		M1
	$\Rightarrow x^2 + 30x + 225 = 64x$		
	$\therefore x^2 - 34x + 225 = 0 *$	Incorrect solution	A0
			(2/5)

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code US034362 January 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

