C1 Graphs of Functions

1 Sketch and label each pair of graphs on the same set of axes showing the coordinates of any points where the graphs intersect. Write down the equations of any asymptotes.
a $y=x^{2}$ and $y=x^{3}$
b $y=x^{2} \quad$ and $\quad y=x^{4}$
c $y=\frac{1}{x} \quad$ and $\quad y=\frac{1}{x^{2}}$
d $y=x \quad$ and $\quad y=\sqrt{x}$
e $y=x^{2} \quad$ and $\quad y=3 x^{2}$
f $y=\frac{1}{x} \quad$ and $\quad y=\frac{2}{x}$

$$
f(x)=(x-1)(x-3)(x-4)
$$

a Find $\mathrm{f}(0)$.
b Write down the solutions of the equation $\mathrm{f}(x)=0$.
c Sketch the curve $y=\mathrm{f}(x)$.
3 Sketch each graph showing the coordinates of any points of intersection with the coordinate axes.
a $y=(x+1)(x-1)(x-3)$
b $y=2 x(x-1)(x-5)$
c $y=-(x+2)(x+1)(x-2)$
d $y=x^{2}(x-4)$
e $y=3 x(2+x)(1-x)$
f $y=(x+2)(x-1)^{2}$

4 a Factorise fully $x^{3}+6 x^{2}+9 x$.
b Hence, sketch the curve $y=x^{3}+6 x^{2}+9 x$, showing the coordinates of any points where the curve meets the coordinate axes.

5 Given that the constants p and q are such that $p>q>0$, sketch each of the following graphs showing the coordinates of any points of intersection with the coordinate axes.
a $y=(x-p)(x-q)^{2}$
b $y=(x-p)\left(x^{2}-q^{2}\right)$

6

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which has a turning point at $(1,-2)$ and crosses the y-axis at the point $(0,-5)$.
Given that $\mathrm{f}(x)$ is a quadratic function, find an expression for $\mathrm{f}(x)$.
7

The diagram shows the curve with equation $y=a x^{3}+b x^{2}+c x+d$.
Given that the curve crosses the y-axis at the point $(0,-8)$ and crosses the x-axis at the points $(-2,0),(1,0)$ and $(2,0)$, find the values of the constants a, b, c and d.

8

The diagram shows the graph of $y=\mathrm{f}(x)$.
Use the graph to write down the number of solutions that exist to each of the following equations.
a $\mathrm{f}(x)=1$
b $\mathrm{f}(x)=3$
c $\mathrm{f}(x)=-1$
d $\mathrm{f}(x)=0$

9 a Sketch on the same set of axes the graphs of $y=x^{2}$ and $y=1-2 x$.
b Hence state the number of roots that the equation $x^{2}+2 x-1=0$ has and give a reason for your answer.

10 a Find the coordinates of the turning point of the curve $y=x^{2}+2 x-3$.
b By sketching two suitable graphs on the same set of axes, show that the equation

$$
x^{2}+2 x-3-\frac{1}{x}=0
$$

has one positive and two negative real roots.
11 Show that the line $y=x-3$ is a tangent to the curve $y=x^{2}-5 x+6$.
12 a Solve the simultaneous equations

$$
\begin{aligned}
& y=3 x+7 \\
& y=x^{2}+5 x+8
\end{aligned}
$$

b Hence, describe the geometrical relationship between the straight line $y=3 x+7$ and the curve $y=x^{2}+5 x+8$.

13 a Find the coordinates of the points where the straight line $y=x+6$ meets the curve $y=x^{3}-4 x^{2}+x+6$.
b Given that

$$
x^{3}-4 x^{2}+x+6 \equiv(x+1)(x-2)(x-3)
$$

sketch the straight line $y=x+6$ and the curve $y=x^{3}-4 x^{2}+x+6$ on the same diagram, showing the coordinates of the points where the curve crosses the coordinate axes.

14 Find the value of the constant k such that the straight line with equation $y=3 x+k$ is a tangent to the curve with equation $y=2 x^{2}-5 x+1$.

15 Find the set of values of the constant a for which the line $y=2-5 x$ intersects the curve $y=x^{2}+a x+18$ at two points.

16 The curve C has the equation $y=x^{2}-2 x+6$.
a Find the values of p for which the line $y=p x+p$ is a tangent to the curve C.
b Prove that there are no real values of q for which the line $y=q x+7$ is a tangent to the curve C.

