C1 Coordinate Geometry

1 The straight line l has gradient -3 and passes through the point with coordinates $(3,-5)$.
a Find an equation of the line l.
The straight line m passes through the points with coordinates $(-1,-2)$ and $(4,1)$.
b Find the equation of m in the form $a x+b y+c=0$, where a, b and c are integers.
The lines l and m intersect at the point P.
c Find the coordinates of P.

2 Given that the straight line passing through the points $A(2,-3)$ and $B(7, k)$ has gradient $\frac{3}{2}$,
a find the value of k,
b show that the perpendicular bisector of $A B$ has the equation $8 x+12 y-45=0$.
3 The vertices of a triangle are the points $A(5,4), B(-5,8)$ and $C(1,11)$.
a Find the equation of the straight line passing through A and B, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
b Find the coordinates of the point M, the mid-point of $A C$.
c Show that $O M$ is perpendicular to $A B$, where O is the origin.
4

The line l with equation $3 x+y-9=0$ intersects the line m with equation $2 x+3 y-12=0$ at the point A as shown in the diagram above.
a Find, as exact fractions, the coordinates of the point A.
The region R_{1} is bounded by l, m and the y-axis.
The region R_{2} is bounded by l, m and the x-axis.
b Show that the ratio of the area of R_{1} to the area of R_{2} is $25: 18$
5 The straight line l has the equation $2 x+5 y+10=0$.
The straight line m has the equation $6 x-5 y-30=0$.
a Sketch the lines l and m on the same set of axes showing the coordinates of any points at which each line crosses the coordinate axes.
The points where line m crosses the coordinate axes are denoted by A and B.
b Show that l passes through the mid-point of $A B$.
$6 \quad$ The straight line l passes through the points with coordinates $(-10,-4)$ and $(5,4)$.
a Find the equation of l in the form $a x+b y+c=0$, where a, b and c are integers.
The line l crosses the coordinate axes at the points P and Q.
b Find, as an exact fraction, the area of triangle $O P Q$, where O is the origin.
c Show that the length of $P Q$ is $2 \frac{5}{6}$.
7 The point A has coordinates $(-8,1)$ and the point B has coordinates $(-4,-5)$.
a Find the equation of the straight line passing through A and B, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
b Show that the distance of the mid-point of $A B$ from the origin is $k \sqrt{10}$ where k is an integer to be found.

8 The straight line l_{1} has gradient $\frac{1}{3}$ and passes through the point with coordinates $(-3,4)$.
a Find the equation of l_{1} in the form $a x+b y+c=0$, where a, b and c are integers.
The straight line l_{2} has the equation $5 x+p y-2=0$ and intersects l_{1} at the point with coordinates $(q, 7)$.
b Find the values of the constants p and q.

9

The diagram shows trapezium $A B C D$ in which sides $A B$ and $D C$ are parallel. The point A has coordinates $(-4,2)$ and the point B has coordinates $(6,6)$.
a Find the equation of the straight line passing through A and B, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
Given that the gradient of $B C$ is -1 ,
b find an equation of the straight line passing through B and C.
Given also that the point D has coordinates $(-2,7)$,
c find the coordinates of the point C,
d show that $\angle A C B=90^{\circ}$.
10 The straight line l passes through the points $A(1,2 \sqrt{3})$ and $B(\sqrt{3}, 6)$.
a Find the gradient of l in its simplest form.
b Show that l also passes through the origin.
c Show that the straight line which passes through A and is perpendicular to l has equation

$$
x+2 \sqrt{3} y-13=0 .
$$

