C1

1 Find the gradient of the line segment joining each pair of points.
a $(3,1)$ and $(5,5)$
b $(4,7)$ and $(10,9)$
c $(6,1)$ and $(2,5)$
d $(-2,2)$ and $(2,8)$
e $(1,3)$ and $(7,-1)$
f $(4,5)$ and $(-5,-7)$
g $(-2,0)$ and $(0,-8)$
h $(8,6)$ and $(-7,-2)$

2 Write down the gradient and y-intercept of each line.
a $y=4 x-1$
b $y=\frac{1}{3} x+3$
c $y=6-x$
d $y=-2 x-\frac{3}{5}$

3 Find the gradient and y-intercept of each line.
a $x+y+3=0$
b $x-2 y-6=0$
c $3 x+3 y-2=0$
d $4 x-5 y+1=0$

4 Write down, in the form $y-y_{1}=m\left(x-x_{1}\right)$, the equation of the straight line with the given gradient which passes through the given point.
a gradient 2 ,
point $(4,1)$
b gradient 5, \quad point $(2,-5)$
c gradient -3 , point $(-1,1)$
d gradient $\frac{1}{2}$, point $(1,6)$
e gradient -2 , point $\left(\frac{3}{4},-\frac{1}{4}\right)$
f gradient $-\frac{1}{5}$, point $(-3,-7)$

5 Find, in the form $y=m x+c$, the equation of the straight line with the given gradient which passes through the given point.

a	gradient 3,	point $(1,2)$	b	gradient -1,	$\operatorname{point}(5,3)$
c	gradient 4,	point $(-2,-3)$	d	gradient -2,	$\operatorname{point}(-4,1)$
e	gradient $\frac{1}{3}$,	$\operatorname{point}(-3,1)$	f	$\operatorname{gradient}-\frac{5}{6}$,	$\operatorname{point}(9,-2)$

6 Find, in each case, the equation of the straight line with gradient m which passes through the point P. Give your answers in the form $a x+b y+c=0$, where a, b and c are integers.
a $m=1, \quad P(2,-4)$
b $m=\frac{1}{2}, \quad P(6,1)$
c $m=-4, \quad P(-1,8)$
d $m=\frac{2}{5}, \quad P(-3,5)$
e $m=-3, \quad P\left(\frac{3}{2},-\frac{1}{8}\right)$
f $m=-\frac{3}{4}, \quad P\left(\frac{2}{3},-7\right)$

7 Find, in the form $y=m x+c$, the equation of the straight line passing through each pair of points.
a $(0,1)$ and $(4,13)$
b $(2,9)$ and $(7,-1)$
c $(-4,3)$ and $(2,7)$
d $\left(-\frac{1}{2},-2\right)$ and $(2,8)$
e $(3,-2)$ and $(18,-5)$
f $(-3.2,4)$ and $(-2,0.4)$

8 Find, in the form $a x+b y+c=0$, where a, b and c are integers, the equation of the straight line which passes through each pair of points.
a $(3,0)$ and $(5,2)$
b $(-1,8)$ and $(5,-4)$
c $(-5,3)$ and $(7,5)$
d $(-4,-1)$ and $(8,-17)$
e $(2,-1.5)$ and $(7,0)$
f $\left(-\frac{3}{5}, \frac{1}{10}\right)$ and $(3,1)$
$9 \quad$ The straight line l passes through the points $A(-6,8)$ and $B(3,2)$.
a Find an equation of the line l.
b Show that the point $C(9,-2)$ lies on l.
10 The point $M(k, 2 k)$ lies on the line with equation $x-3 y+15=0$.
Find the value of the constant k.

11 The point with coordinates $\left(4 p, p^{2}\right)$ lies on the line with equation $2 x-4 y+5=0$. Find the two possible values of the constant p.

12 Find the coordinates of the points at which each straight line crosses the coordinate axes.
a $y=2 x+5$
b $x-3 y+6=0$
c $2 x+4 y-3=0$
d $5 x-3 y=10$

13 The line l has the equation $5 x-18 y-30=0$.
a Find the coordinates of the points A and B where the line l crosses the coordinate axes.
b Find the area of triangle $O A B$ where O is the origin.
14 Find the exact length of the line segment joining each pair of points, giving your answers in terms of surds where appropriate.
a $(1,1)$ and $(4,5)$
b $(0,0)$ and $(3,1)$
c $(1,-4)$ and $(9,11)$
d $(7,-8)$ and $(-9,4)$
e $(3,12)$ and $(1,7)$
f $(-6,-3)$ and $(2,-7)$

15 The points $P(22,15), Q(-13, c)$ and $R(k, 24)$ all lie on a circle, centre $(2,0)$.
Find the radius of the circle and the possible values of the constants c and k.
16 The points $A(-2,7)$ and $B(6,-3)$ lie at either end of the diameter of a circle.
Find the area of the circle, giving your answer as an exact multiple of π.
17 The corners of a triangle are the points $P(4,7), Q(-2,5)$ and $R(3,-10)$.
a Find the length of each side of triangle $P Q R$, giving your answers in terms of surds.
b Hence, verify that triangle $P Q R$ contains a right-angle.
c Find the area of triangle $P Q R$.
18 Find the coordinates of the mid-point of the line segment joining each pair of points.
a $(0,2)$ and $(8,4)$
b $(1,9)$ and $(7,5)$
c $(-5,1)$ and $(3,-7)$
d $(-5,-7)$ and $(7,-5)$
e $(1,0)$ and $(2,9)$
f $(-1,-2)$ and $(4,-5)$
g $(2.4,3.1)$ and $(0.6,4.5)$
h $(0,3)$ and $\left(\frac{1}{2}, \frac{3}{2}\right)$
i $\left(-\frac{5}{4}, 2\right)$ and $\left(-1,-\frac{3}{5}\right)$

19 The straight line l_{1} passes through the points $P(-2,1)$ and $Q(4,-1)$.
a Find the equation of l_{1} in the form $a x+b y+c=0$, where a, b and c are integers.
The straight line l_{2} passes through the point $R(2,4)$ and through the mid-point of $P Q$.
b Find the equation of l_{2} in the form $y=m x+c$.
20 Find the coordinates of the point of intersection of each pair of straight lines.
a $y=2 x+1$
b $\begin{aligned} y & =x+7 \\ y & =4-2 x\end{aligned}$
c $y=5 x-4$
$y=4-2 x$
$y=3 x-1$
d $x+2 y-4=0$
e $2 x+y-2=0$
f $3 x+2 y=0$
$3 x-2 y+4=0$
$x+3 y+9=0$
$x+4 y-2=0$

21 The line l with equation $x-2 y+2=0$ crosses the y-axis at the point P. The line m with equation $3 x+y-15=0$ crosses the y-axis at the point Q and intersects l at the point R. Find the area of triangle $P Q R$.

