C1 DIFFERENTIATION

1 Find the gradient at the point with x-coordinate 3 on each of the following curves.
a $y=x^{3}$
b $y=4 x-x^{2}$
c $y=2 x^{2}-8 x+3$
d $y=\frac{3}{x}+2$

2 Find the gradient of each curve at the given point.
a $y=3 x^{2}+x-5$
$(1,-1)$
b $y=x^{4}+2 x^{3}$
c $y=x(2 x-3)$
d $y=x^{2}-2 x^{-1}$
e $y=x^{2}+6 x+8$
$(-3,-1)$
f $y=4 x+x^{-2}$

3 Evaluate $f^{\prime}(4)$ when
a $\mathrm{f}(x)=(x+1)^{2}$
b $\mathrm{f}(x)=x^{\frac{1}{2}}$
c $\mathrm{f}(x)=x-4 x^{-2}$
d $\mathrm{f}(x)=5-6 x^{\frac{3}{2}}$

4 The curve with equation $y=x^{3}-4 x^{2}+3 x$ crosses the x-axis at the points A, B and C.
a Find the coordinates of the points A, B and C.
b Find the gradient of the curve at each of the points A, B and C.
5 For the curve with equation $y=2 x^{2}-5 x+1$,
a find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
b find the value of x for which $\frac{d y}{d x}=7$.
6 Find the coordinates of the points on the curve with the equation $y=x^{3}-8 x$ at which the gradient of the curve is 4 .

7 A curve has the equation $y=x^{3}+x^{2}-4 x+1$.
a Find the gradient of the curve at the point $P(-1,5)$.
Given that the gradient at the point Q on the curve is the same as the gradient at the point P,
b find, as exact fractions, the coordinates of the point Q.
8 Find an equation of the tangent to each curve at the given point.
a $y=x^{2}$
$(2,4)$
b $y=x^{2}+3 x+4$
c $y=2 x^{2}-6 x+8$
d $y=x^{3}-4 x^{2}+2$
$(3,-7)$

9 Find an equation of the tangent to each curve at the given point. Give your answers in the form $a x+b y+c=0$, where a, b and c are integers.
a $y=3-x^{2}$
$(-3,-6)$
b $y=\frac{2}{x}$
c $y=2 x^{2}+5 x-1$
$\left(\frac{1}{2}, 2\right)$
d $y=x-3 \sqrt{x}$

10 Find an equation of the normal to each curve at the given point. Give your answers in the form $a x+b y+c=0$, where a, b and c are integers.
a $y=x^{2}-4$
$(1,-3)$
b $y=3 x^{2}+7 x+7$
c $y=x^{3}-8 x+4$
$(2,-4)$
d $y=x-\frac{6}{x}$

11 Find, in the form $y=m x+c$, an equation of a the tangent to the curve $y=3 x^{2}-5 x+2$ at the point on the curve with x-coordinate 2 ,
b the normal to the curve $y=x^{3}+5 x^{2}-12$ at the point on the curve with x-coordinate -3 .
12 A curve has the equation $y=x^{3}+3 x^{2}-16 x+2$.
a Find an equation of the tangent to the curve at the point $P(2,-10)$.
The tangent to the curve at the point Q is parallel to the tangent at the point P.
b Find the coordinates of the point Q.
13 A curve has the equation $y=x^{2}-3 x+4$.
a Find an equation of the normal to the curve at the point $A(2,2)$.
The normal to the curve at A intersects the curve again at the point B.
b Find the coordinates of the point B.
14

$$
\mathrm{f}(x) \equiv x^{3}+4 x^{2}-18
$$

a Find $\mathrm{f}^{\prime}(x)$.
b Show that the tangent to the curve $y=\mathrm{f}(x)$ at the point on the curve with x-coordinate -3 passes through the origin.

15 The curve C has the equation $y=6+x-x^{2}$.
a Find the coordinates of the point P, where C crosses the positive x-axis, and the point Q, where C crosses the y-axis.
b Find an equation of the tangent to C at P.
c Find the coordinates of the point where the tangent to C at P meets the tangent to C at Q.
16 The straight line l is a tangent to the curve $y=x^{2}-5 x+3$ at the point A on the curve.
Given that l is parallel to the line $3 x+y=0$,
a find the coordinates of the point A,
b find the equation of the line l in the form $y=m x+c$.
17 The line with equation $y=2 x+k$ is a normal to the curve with equation $y=\frac{16}{x^{2}}$. Find the value of the constant k.

18 A ball is thrown vertically downwards from the top of a cliff. The distance, s metres, of the ball from the top of the cliff after t seconds is given by $s=3 t+5 t^{2}$.
Find the rate at which the distance the ball has travelled is increasing when
a $t=0.6$,
b $s=54$.

19 Water is poured into a vase such that the depth, $h \mathrm{~cm}$, of the water in the vase after t seconds is given by $h=k t^{\frac{1}{3}}$, where k is a constant. Given that when $t=1$, the depth of the water in the vase is increasing at the rate of 3 cm per second,
a find the value of k,
b find the rate at which h is increasing when $t=8$.

