You will need to use a calculator for this worksheet

1

The diagram shows the curve $y=x^{2}$ which passes through the point $A(1,1)$ and the point B.
a Copy and complete the table to find the gradient of the chord $A B$ when the x-coordinate of B takes each of the given values.

x-coordinate of B	y-coordinate of B	gradient of $A B$
2	4	$\frac{4-1}{2-1}=3$
1.1	1.21	
1.01		
1.001		

b Suggest a value for the gradient of the tangent to the curve $y=x^{2}$ at the point $(1,1)$.
c Repeat part a using $0,0.9,0.99$ and 0.999 as the x-coordinates of B and comment on your answer to part \mathbf{b}.

2 Use a similar table of values to that in question 1 to find a value for the gradient of the tangent to the curve $y=x^{2}$ at the point A when A has the coordinates
a $(2,4)$
b $(4,16)$
c $(1.5,2.25)$
d $(-3,9)$

3 a Using your answers to questions 1 and 2, suggest an expression in terms of x for the gradient of the curve $y=x^{2}$ at the point (x, y).
b Write down the gradient of the curve $y=x^{2}$ at the points
i $(6,36)$
ii $(2.4,5.76)$
iii $(-3.2,10.24)$

4 By considering the gradient of a suitable sequence of chords, find a value for the gradient of each curve at the given point.
a $y=x^{4}$ at $(1,1)$
b $y=x^{2}-5 x+3$ at $(2,-3)$
c $y=\sqrt{x}$ at $(4,2)$
d $y=\frac{2}{x}$ at $(2,1)$

5 a By considering the gradient of a suitable sequence of chords, find a value for the gradient of the curve $y=x^{3}$ at the points
i $(1,1)$
ii $(2,8)$
iii $(3,27)$
b Suggest an expression of the form $k x^{n}$ for the gradient of the curve $y=x^{3}$ at the point (x, y).
c Find the gradient of the curve $y=x^{3}$ at the points
i $(4,64)$
ii $(-2,-8)$
iii $(1.5,3.375)$

