DIFFERENTIATION

C1

1

You will need to use a calculator for this worksheet

The diagram shows the curve $y = x^2$ which passes through the point A (1, 1) and the point B.

a Copy and complete the table to find the gradient of the chord *AB* when the *x*-coordinate of *B* takes each of the given values.

<i>x</i> -coordinate of <i>B</i>	<i>y</i> -coordinate of <i>B</i>	gradient of AB
2	4	$\frac{4-1}{2-1} = 3$
1.1	1.21	
1.01		
1.001		

- **b** Suggest a value for the gradient of the tangent to the curve $y = x^2$ at the point (1, 1).
- c Repeat part **a** using 0, 0.9, 0.99 and 0.999 as the *x*-coordinates of *B* and comment on your answer to part **b**.
- 2 Use a similar table of values to that in question 1 to find a value for the gradient of the tangent to the curve $y = x^2$ at the point A when A has the coordinates
 - **a** (2, 4) **b** (4, 16) **c** (1.5, 2.25) **d** (-3, 9)
- 3 a Using your answers to questions 1 and 2, suggest an expression in terms of x for the gradient of the curve $y = x^2$ at the point (x, y).
 - **b** Write down the gradient of the curve $y = x^2$ at the points

4 By considering the gradient of a suitable sequence of chords, find a value for the gradient of each curve at the given point.

a	$y = x^4$ at (1, 1)	b	$y = x^2 -$	- 5x	+ 3	at	(2, -3)
c	$y = \sqrt{x}$ at (4, 2)	d	$y = \frac{2}{x}$	at	(2, 1)	

5 **a** By considering the gradient of a suitable sequence of chords, find a value for the gradient of the curve $y = x^3$ at the points

i (1, 1) **ii** (2, 8) **iii** (3, 27)

- **b** Suggest an expression of the form kx^n for the gradient of the curve $y = x^3$ at the point (x, y).
- **c** Find the gradient of the curve $y = x^3$ at the points
 - i (4, 64) ii (-2, -8) iii (1.5, 3.375)