1 By completing the square, show that the roots of the equation $a x^{2}+b x+c=0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

2 Use the quadratic formula to solve each equation, giving your answers as simply as possible in terms of surds where appropriate.
a $x^{2}+4 x+1=0$
b $4+8 t-t^{2}=0$
c $y^{2}-20 y+91=0$
d $r^{2}+2 r-7=0$
e $6+18 a+a^{2}=0$
f $m(m-5)=5$
g $x^{2}+11 x+27=0$
h $2 u^{2}+6 u+3=0$
i $\quad 5-y-y^{2}=0$
j $2 x^{2}-3 x=2$
k $3 p^{2}+7 p+1=0$
l $t^{2}-14 t=14$
m $0.1 r^{2}+1.4 r=0.9$
n $6 u^{2}+4 u=1$
o $\frac{1}{2} y^{2}-3 y=\frac{2}{3}$
p $4 x(x-3)=11-4 x$

3

The diagram shows the curve with equation $y=2 x^{2}-8 x+3$.
Find and simplify the exact coordinates of the points where the curve crosses the x-axis.
4 State the condition for which the roots of the equation $a x^{2}+b x+c=0$ are
a real and distinct
b real and equal
c not real

5 Sketch the curve $y=a x^{2}+b x+c$ and the x-axis in the cases where
a $a>0$ and $b^{2}-4 a c>0$
b $a<0$ and $b^{2}-4 a c<0$
c $a>0$ and $b^{2}-4 a c=0$
d $a<0$ and $b^{2}-4 a c>0$

6 By evaluating the discriminant, determine whether the roots of each equation are real and distinct, real and equal or not real.
a $x^{2}+2 x-7=0$
b $x^{2}+x+3=0$
c $x^{2}-4 x+5=0$
d $x^{2}-6 x+3=0$
e $x^{2}+14 x+49=0$
f $x^{2}-9 x+17=0$
g $x^{2}+3 x=11$
h $2+3 x+2 x^{2}=0$
i $5 x^{2}+8 x+3=0$
j $3 x^{2}-7 x+5=0$
k $9 x^{2}-12 x+4=0$
l $13 x^{2}+19 x+7=0$
m $4-11 x+8 x^{2}=0$
n $x^{2}+\frac{2}{3} x=\frac{1}{4}$
o $\quad x^{2}-\frac{3}{4} x+\frac{1}{8}=0$
p $\frac{2}{5} x^{2}+\frac{3}{5} x+\frac{1}{3}=0$

7 Find the value of the constant p such that the equation $x^{2}+x+p=0$ has equal roots.
8 Given that $q \neq 0$, find the value of the constant q such that the equation $x^{2}+2 q x-q=0$ has a repeated root.

9 Given that the x-axis is a tangent to the curve with the equation

$$
y=x^{2}+r x-2 x+4
$$

find the two possible values of the constant r.

