| Centre
No. | | | | Pape | er Refei | rence | | | Surname | Ť. | Initial(s) | |------------------|--|---|---|------|----------|-------|---|---|-----------|----------------|--| | Candidate
No. | | 6 | 6 | 6 | 3 | / | 0 | 1 | Signature | 1900 (trian 1) | - Longitude de la companya com | # 6663/01 # **Edexcel GCE** # Core Mathematics C1 **Advanced Subsidiary** Calculators may NOT be used in this examination. Wednesday 16 May 2012 – Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Pink) Items included with question papers | 152 | ammer | 's use or | пу | |---|---------|-----------|------| | ************* | | | | | Tea | n Leade | er's use | only | | *************************************** | | | | | Q | uestior
Vumber | Leave
Blank | |---|-------------------|----------------| | | 1 | | | - | 2 | | | | 3 | | | | 4 | | | | 5 | | | | 6 | | | | 7 | | | L | ~ | | |---|---|--| | | 6 | | | | 7 | | | ſ | R | | 10 ### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 10 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. #### Advice to Candidates You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy ©2012 Pearson Education Ltd. Turn over Total **PEARSON** W850/R6663/57570 5/5/5/5 1. Find $$\int \left(6x^2 + \frac{2}{x^2} + 5\right) \mathrm{d}x$$ giving each term in its simplest form. $$6x^2 + 2x^2 + 5$$ $$x^2 + 2x + 5 \tag{4}$$ $$\frac{60c}{3} + 2x + 5x + c$$ $$2x^{3} - 2x^{-1} + 5x + 0$$ | | | CONTRACTOR | | |------|------|---|--| | | | | | | | | | | |
 |
 |
 |
 | | | | | | | Q1 (Total 4 marks) 2. (a) Evaluate $(32)^{\frac{3}{5}}$, giving your answer as an integer. (2) (b) Simplify fully $\left(\frac{25x^4}{4}\right)^{-\frac{1}{2}}$ (2) | | | | <u> </u> | | |---|---|----|----------|--| | 1 | _ | 11 | | | | | / | 4- | /_ | | | | | | - | | | ^ | | | |----|----|--------------| | | 4 | | | - | | -4 | | 10 | 15 | \mathbf{r} | Q2 (Total 4 marks) | 3. | Show that | $\frac{2}{\sqrt{(12)-\sqrt{(8)}}}$ | can be written in the form | $\sqrt{a} + \sqrt{b}$, where a and b are integers. | |----|-----------|------------------------------------|----------------------------|---| | | | () | | (5) | $$\frac{2(\sqrt{12}+\sqrt{8})}{(\sqrt{12}+\sqrt{8})}$$ 4. $$y = 5x^3 - 6x^{\frac{4}{3}} + 2x - 3$$ (a) Find $\frac{dy}{dx}$ giving each term in its simplest form. (4) (b) Find $$\frac{d^2y}{dx^2}$$ (2) a) $$\frac{dy}{dx} = 15x^2 + 2$$ $b/\frac{1^2y}{4x^2} = 30x - \frac{8}{3}x^{\frac{2}{3}}$ 5. A sequence of numbers $a_1, a_2, a_3 \dots$ is defined by $$a_1 = 3$$ $$a_{n+1} = 2a_n - c \qquad (n \geqslant 1)$$ where c is a constant. (a) Write down an expression, in terms of c, for a_2 (1) (b) Show that $a_3 = 12 - 3c$ **(2)** Given that $\sum_{i=1}^{4} a_i \geqslant 23$ (c) find the range of values of c. (4) a) $$Q_2 = 2(Q_1) - C$$ $$= 2(3) - 0$$ $$b/ (a_3 = 2(a_2) - c$$ $$= 2(6-C)-C$$ $$= 12 - 20 - 0$$ $$= 12 - 30$$ $$C) \qquad C_{4} = 2(03) - C$$ $$= 2(12-3C)-C$$ = 24 -6C-C 3+6-C+12-3C+24-7C > 23 | 45 | - 11 C >, 23
45 >, 23 + 11 C
22 7/11 C | | |--|--|--| | - | 45 > 23+11(| | | | 20 7/110 | | | 3 | 2 >/ C | | | * | <i>5</i> // C | | | | 2 ≤ 2 | = | | | | | | | | | | | | | * | =- | | | | | | | | | | | | | | | | | | THE OWNER THE RESERVE OF THE STREET STREET, STREET STREET, STR | A AND AND AND AND AND AND AND AND AND AN | | | | | (Total 7 marks) - 6. A boy saves some money over a period of 60 weeks. He saves 10p in week 1, 15p in week 2, 20p in week 3 and so on until week 60. His weekly savings form an arithmetic sequence. - (a) Find how much he saves in week 15 **(2)** (b) Calculate the total amount he saves over the 60 week period. (3) The boy's sister also saves some money each week over a period of m weeks. She saves 10p in week 1, 20p in week 2, 30p in week 3 and so on so that her weekly savings form an arithmetic sequence. She saves a total of £63 in the m weeks. (c) Show that $$m(m+1)=35\times36$$ (4) (d) Hence write down the value of m. (1) a) $$a = 10 d = 5$$ $$U_n = a + (n-1)d$$ $U_{15} = 10 + (5-1)5$ $$= 10 + 14(5)$$ $$S_{60} = \frac{60}{2} \left(2(10) + (60 - 1)(5) \right)$$ $$= 30(20 + 59(5))$$ $$= 30 (3)$$ $$6300 = \frac{m}{2}(2(10) + (m-1)(10))$$ $$6300 = \frac{m}{2}(20 + 10m - 10)$$ ### Question 6 continued $$6300 = m(5+5m)$$ $6300 = 5m + 5m^{3}$ $6300 = 5m(1+m)$ $1260 = m(m+1)$ $35\times36 = m(m+1)$ $$d/M=35$$ 7. The point P(4, -1) lies on the curve C with equation y = f(x), x > 0, and $$f'(x) = \frac{1}{2}x - \frac{6}{\sqrt{x}} + 3$$ (a) Find the equation of the tangent to C at the point P, giving your answer in the form y = mx + c, where m and c are integers. (4) (b) Find f(x). (4) a) $$\int_{1}^{1} x = \frac{1}{2}x - \frac{6}{12} + 3$$ $$f'(4) = \frac{1}{2}(4) - \frac{6}{14} + 3$$ $$= 2 + -3 + 3$$ $= 2$ $$m=2$$. $$y = 2x + c \quad (4,-1)$$ $$C = -9$$ $$y = 2x - 9$$ $$6/f(x)=\frac{1}{3}x-6x^{-\frac{1}{2}}+3$$ $$f'(x) = \frac{1}{3}x - 6x^{2} + 3$$ $$f(x) = \frac{1}{2}x^{2} - 6x^{2} + 3x + C$$ $$= \frac{1}{4}x^{2} - 12x^{2} + 3x + C$$ $$(4,-1)$$ $-1 = 4(4)^{2} - 12(4)^{\frac{1}{2}} + 3(4) + 0$ $$C = 7$$ $$4x - 5 - x^2 = q - (x + p)^2$$ where p and q are integers. (a) Find the value of p and the value of q. (3) (b) Calculate the discriminant of $4x - 5 - x^2$ (2) (c) On the axes on page 17, sketch the curve with equation $y = 4x - 5 - x^2$ showing clearly the coordinates of any points where the curve crosses the coordinate axes. (3) a) $$4x-5-x^2=q-(x+p)^2$$ $$(x+p)^2-q=x^2-4x+5$$ $$= (x-2)^{2} - (2)^{2} + 5$$ $$= (x-2)^{2} - 4 + 5$$ $$= (x-2)^{2} + 1$$ $$p = -2$$ $q = -1$ $$(4)^{2} - 4(-1)(-5)$$ $16 - 4(5)$ $16 - 20$ $$C/$$ crosses y when $x=0$ $y=4(6)-5-6)^{2}$ $$y = 4(0) - 5 - 6)^{2}$$ The line L_1 has equation 4y + 3 = 2x The point A(p, 4) lies on L_1 (a) Find the value of the constant p. (1) The line L_2 passes through the point C(2, 4) and is perpendicular to L_1 (b) Find an equation for L_2 giving your answer in the form ax + by + c = 0, where a, b and c are integers. (5) The line L_1 and the line L_2 intersect at the point D. (c) Find the coordinates of the point D. (3) (d) Show that the length of *CD* is $\frac{3}{2}\sqrt{5}$ (3) A point B lies on L_1 and the length of $AB = \sqrt{(80)}$ The point E lies on L_2 such that the length of the line CDE = 3 times the length of CD. (e) Find the area of the quadrilateral ACBE. (3) | (Dul) | |-------| | (,4) | | | | | | | | | 4y = 2x - 3 y = 1/2x - 3/4 perpendicular gradient = -2 $$y = -2x + C$$ (2,4) $4 = -2(2) + C$ $4 = -4 + C$ $8 = C$ ## Question 9 continued $$y = -2x + 8$$ $$2x+y-8=0$$ $$2x + y - 8 = 0$$ $2x = 8 - 9$ $$4y + 3 = 20$$ $$4y+3 = 8 - 9$$ $5y+3 = 8$ $$5y = 5$$ $$y = 1$$ $$7 = 2x$$ $$\chi^2 = 3^2 + \left(\frac{3}{2}\right)^2$$ $$= \sqrt{45} - \sqrt{9\sqrt{5}} - 3\sqrt{5}$$ ## Question 9 continued Area of AB(= $$\frac{1}{2}(50)(\frac{3}{2}(5))$$ = $\frac{1}{2}(45)(\frac{3}{2}5)$ $$= \frac{3}{4}(45)(5)$$ $$= 3(5)(5)$$ $$= 3(5)$$ Area of $$ABE = \frac{1}{2}\sqrt{80} \times 3\sqrt{5}$$ $= \frac{1}{2}(4\sqrt{5})(3\sqrt{5})$ $= \frac{1}{2}(12(5))$ $= \frac{1}{2}60$ Total area = 45 units 10. Figure 1 Figure 1 shows a sketch of the curve C with equation y = f(x) where $$f(x) = x^2(9 - 2x)$$ There is a minimum at the origin, a maximum at the point (3, 27) and C cuts the x-axis at the point A. (a) Write down the coordinates of the point A. (1) - (b) On separate diagrams sketch the curve with equation - (i) y = f(x + 3) - (ii) y = f(3x) On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes. (6) The curve with equation y = f(x) + k, where k is a constant, has a maximum point at (3, 10). (c) Write down the value of k. (1) # Question 10 continued | C/_ | <u> </u> | 7 | | | | 5 | | | | |-----|----------|---|------|-------------|----|---|---|------|--| | 1 | | _ |
 | | | *************************************** |
*************************************** |
 | | | | | |
 | | F. | |
= | | | | | | | | *********** | | |
 |
 | |