## edexcel \#\#

Mark Scheme (Results)

## January 2013

GCE Maths - Core Mathematics C1 (6663/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code US034359
All the material in this publication is copyright
© Pearson Education Ltd 2013

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of $M$ marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ or the letters ft will be used for correct follow through
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\quad$ The answer is printed on the paper or ag- answer given
- $\square$ or d... The second mark is dependent on gaining the first mark
- quotation marks are used to indicate "their value"

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A 1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as Aft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from the first two $A$ or $B$ marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. Marks for each question are scored by clicking in the marking grids that appear below each student response on ePEN. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

|  | 0 | 1 |
| ---: | ---: | ---: |
| aM |  | $\bullet$ |
| aA | $\bullet$ |  |
| bM 1 |  | $\bullet$ |
| bA 1 | $\bullet$ |  |
| bB | $\bullet$ |  |
| bM 2 |  | $\bullet$ |
| bA 2 |  | $\bullet$ |

9. Be careful when scoring a response that is either all correct or all incorrect. It is very easy to click down the ' 0 ' column when it was meant to be ' 1 ' and all correct.

## General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

## Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$
2. Formula

Attempt to use correct formula (with values for $a, b$ and $c$ ).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

## Method marks for differentiation and integration:

## 1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

## Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

## Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

## Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

## J anuary 2013 <br> 6663 Core Mathematics C1 <br> Mark Scheme

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. | $x\left(1-4 x^{2}\right)$ <br> Accept $x\left(-4 x^{2}+1\right)$ or $-x\left(4 x^{2}-1\right)$ or $-x\left(-1+4 x^{2}\right)$ or even $4 x\left(\frac{1}{4}-x^{2}\right)$ or equivalent Factorises quadratic (or initial cubic) into two brackets $x(1-2 x)(1+2 x) \text { or }-x(2 x-1)(2 x+1) \text { or } x(2 x-1)(-2 x-1)$ | B1 <br> M1 <br> A1 <br> [3] |
|  |  | 3 marks |
|  | Notes |  |
|  | B1: Takes out a factor of $x$ or $-x$ or even $4 x$. This line may be implied by correct final answer, but if this stage is shown it must be correct. So $\mathbf{B 0}$ for $x\left(1+4 x^{2}\right)$ <br> M1: Factorises the quadratic resulting from their first factorisation using usual rules (see note 1 in General Principles). e.g. $x(1-4 x)(x-1)$. Also allow attempts to factorise cubic such as $\left(x-2 x^{2}\right)(1+2 x)$ etc <br> N.B. Should not be completing the square here. <br> A1: Accept either $x(1-2 x)(1+2 x)$ or $-x(2 x-1)(2 x+1)$ or $x(2 x-1)(-2 x-1)$. (No fractions for this final answer) |  |
|  | Specific situations |  |
|  | Note: $x\left(1-4 x^{2}\right)$ followed by $x(1-2 x)^{2}$ scores B1M1A0 as factors follow quadratic factorisation criteria And $x\left(1-4 x^{2}\right)$ followed by $x(1-4 x)(1+4 x)$ B1M0A0. |  |
|  | Answers with no working: Correct answer gets all three marks B1M1A1 |  |
|  | : $x(2 x-1)(2 x+1)$ gets B0M1A0 if no working as $x\left(4 x^{2}-1\right)$ would earn B0 |  |
|  | Poor bracketing: e.g. $\left(-1+4 x^{2}\right)-x$ gets B0 unless subsequent work implies bracket round the $-x$ in which case candidate may recover the mark by the following correct work. |  |
|  | N.B. If correct factors are followed by $x=0, x=\frac{1}{2}, x=-\frac{1}{2}$ then ignore this as subsequent work. |  |
|  | But these answers- $x=0, x=\frac{1}{2}, x=-\frac{1}{2}$ - with no working, or no factors, gets B0M0A0. |  |
|  | Ignore " $=0$ " written at the end of lines and mark LHS as in the scheme above. Candidate who changes the question to $4 x^{3}-x=x\left(4 x^{2}-1\right)=x(2 x-1)(2 x+1)$ would earn B0 M1 A0 $1 / 3$ |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 2. | $\left(8^{2 x+3}=\left(2^{3}\right)^{2 x+3}\right)=2^{3(2 x+3)}$ or $2^{a x+b}$ with $a=6$ or $b=9$ $=2^{6 x+9}$ or $=2^{3(2 x+3)}$ as final answer with no errors or $(y=) 6 x+9$ or $3(2 x+3)$ | M1 <br> A1 <br> [2] |
|  |  | 2 marks |
|  | Notes |  |
|  | M1: Uses $8=2^{3}$, and multiplies powers $3(2 x+3)$. Does not add powers. ( Just $8=2^{3}$ or $8^{\frac{1}{3}}=2$ is M0 ) A1: Either $2^{6 x+9}$ or $=2^{3(2 x+3)}$ or $\quad(y=) 6 x+9$ or $3(2 x+3)$ |  |
|  | Note: Examples: $2^{6 x+3}$ scores M1A0 $: 8^{2 x+3}=\left(2^{3}\right)^{2 x+3}=2^{3+2 x+3} \text { gets M0A0 }$ <br> Special case: : $\quad=2^{6 x} 2^{9}$ without seeing as single power M1A0 <br> Alternative method using logs: $8^{2 x+3}=2^{y} \Rightarrow(2 x+3) \log 8=y \log 2 \Rightarrow y=\frac{(2 x+3) \log 8}{\log 2}$ <br> So $(y=) 6 x+9$ or $3(2 x+3)$ | M1 <br> A1 [2] |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3. (i) | $\begin{aligned} & (5-\sqrt{8})(1+\sqrt{2}) \\ = & 5+5 \sqrt{2}-\sqrt{8}-4 \\ = & 5+5 \sqrt{2}-2 \sqrt{2}-4 \\ = & 1+3 \sqrt{2} \end{aligned} \quad \sqrt{8}=2 \sqrt{2} \text {, seen or implied at any point. }$ | $\begin{array}{\|lr} \mathrm{M} 1 & \\ \text { B1 } & \\ \text { A1 } & \text { [3] } \end{array}$ |
| (ii) | $\begin{array}{lll} \hline \text { Method 1 } & \text { Method 2 } \\ \text { Either } & \sqrt{80}+\frac{30}{\sqrt{5}}\left(\frac{\sqrt{5}}{\sqrt{5}}\right) & \text { Or }\left(\frac{\sqrt{400}+3}{\sqrt{5}}\right. \\ =4 \sqrt{5}+\ldots & =\left(\frac{20+. .}{. .}\right) . . \\ =4 \sqrt{5}+6 \sqrt{5} & =\left(\frac{50 \sqrt{5}}{5}\right) \\ & =10 \sqrt{5} \end{array}$ | $\begin{array}{ll}\text { M1 } \\ \text { B1 } & \\ \\ \\ \text { A1 } & \\ & \\ & \\ \end{array}$ |
| Alternative for (i) for (i) | $\begin{array}{rr} \hline(5-2 \sqrt{2})(1+\sqrt{2}) & \text { This earns the B1 mark and is entered on epen as B1 } \\ =5+5 \sqrt{2}-2 \sqrt{2}-2 \sqrt{2} \sqrt{2} & \text { Multiplies out correctly with } 2 \sqrt{2} \text {. This may be seen } \\ \text { or implied and may be simplified } \\ \text { e.g. }=5+3 \sqrt{2}-2 \sqrt{4} \text { o.e. } \\ =1+3 \sqrt{2} & \text { For earlier use of } 2 \sqrt{2} \\ 1+3 \sqrt{2} \text { or } a=1 \text { and } b=3 . \end{array}$ | $\begin{aligned} & \text { M1 } \\ & \\ & \text { B1 } \\ & \text { A1 [3] } \\ & 6 \text { marks } \\ & \hline \end{aligned}$ |
|  | Notes |  |
| (i) (ii) | M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion. (This may be implied by correct answer) - can appear as table <br> B1: $\sqrt{8}=2 \sqrt{2}$, seen or implied at any point <br> A1: Fully and correctly simplified to $1+3 \sqrt{2}$ or $a=1$ and $b=3$. <br> M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied or uses <br> Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right)=\frac{6 \times 5}{\sqrt{5}}=6 \sqrt{5}$ <br> B1: (Independent mark) States $\sqrt{80}=4 \sqrt{5}$ Or either $\sqrt{400}=20$ or $\sqrt{80} \sqrt{5}=20$ at any point if they use Method 2. <br> A1: $10 \sqrt{5}$ or $c=10$. |  |
|  | N.B There are other methods e.g. $\sqrt{80}=\frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}}+\frac{30}{\sqrt{5}}=\frac{50}{\sqrt{5}}$ then M1 A1 as before Those who multiply initial expression by $\sqrt{5}$ to obtain $\sqrt{400}+30=20+30=50$ earn M0 B1 A0 |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4. (a) | $\begin{aligned} & u_{2}=9, u_{n+1}=2 u_{n}-1, \quad n \ldots 1 \\ & u_{3}=2 u_{2}-1=2(9)-1 \quad(=17) \\ & u_{4}=2 u_{3}-1=2(17)-1=33 \end{aligned}$ $u_{3}=2(9)-1$ <br> Can be implied by $u_{3}=17$ <br> Both $u_{3}=17$ and $u_{4}=33$ | M1 A1 <br> [2] |
| (b) | $\begin{aligned} & \sum_{r=1}^{4} u_{r}=u_{1}+u_{2}+u_{3}+u_{4} \\ & \left(u_{1}\right)=5 \\ & \sum_{r=1}^{4} u_{r}=" 5 "+9+" 17 "+" 33 "=64 \end{aligned}$ $\left(u_{1}\right)=5$ <br> Adds their first four terms obtained legitimately (see notes below) | B1 <br> (M1 on epen) <br> M1 <br> A1 <br> [3] <br> 5 marks |
|  | Notes |  |
|  | M1: Substitutes 9 into RHS of iteration formula <br> A1: Needs both 17 and 33 (but allow if either or both seen in part (b) ) <br> B1: (Appears as M1 on epen) for $u_{1}=5$ (however obtained - may appear in (a)) May be called $a=5$ <br> M1: Uses their $u_{1}$ found from $u_{2}=2 u_{1}-1$ stated explicitly, or uses $u_{1}=4$ or $5 \frac{1}{2}$, and adds it to $u_{2}$, their $u_{3}$ and their $u_{4}$ only. (See special cases below). <br> There should be no fifth term included. <br> Use of sum of AP is irrelevant and scores M0 <br> A1: 64 |  |
|  | Note: Special cases: A candidate who adds $u_{2}, u_{3}, u_{4}$ and $u_{5}$ scores B0M0A0. (M0M0A0 on epen) Such candidates will usually give a final answer of $9+17+33+65=124$. <br> Candidates who invent an arbitrary (wrong) value for $u_{1}$ will also score B0 M0 A0. (M0M0A0 on epen) Uses $u_{1}=4$ to obtain sum (usually 63) get B0 M1 A0 (M0 M1 A0 on epen) <br> Uses $u_{1}=5 \frac{1}{2}$ to obtain sum (usually $64 \frac{1}{2}$ ) also get B0 M1 A0 (M0 M1 A0 on epen) |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (a) | Gradient of $l_{2}$ is $\quad \frac{1}{2}$ or 0.5 or $\frac{-1}{-2}$ | B1 |
|  | Either $y-6=" \frac{1}{2} "(x-5) \quad$ or $y=" \frac{1}{2} " x+c$ and $6=" \frac{1}{2} "(5)+c \Rightarrow c=\left(" \frac{7}{2} "\right)$ $x-2 y+7=0$ or $-x+2 y-7=0$ <br> or $k(x-2 y+7)=0$ with $\boldsymbol{k}$ an integer | M1 <br> A1 <br> [3] |
|  | Puts $x=0$, or $y=0$ in their equation and solves to find appropriate co-ordinate | M1 |
| (b) | $x$-coordinate of $A$ is -7 and $y$-coordinate of $B$ is $\frac{7}{2}$. | A1 сао |
|  | Applies $\pm \frac{1}{2}$ (base)(height) | M1 |
| (c) | Area $O A B=\frac{1}{2}(7)\left(\frac{7}{2}\right)=\frac{49}{4}(\text { units })^{2} \quad \frac{49}{4}$ | A1cso |
|  |  | [2] |
|  |  | 7 marks |
|  | Notes |  |
| (a) (b) (c) | B1: Must have $1 / 2$ or 0.5 or $\frac{-1}{-2}$ o.e. stated and stops, or used in their line equation <br> M1: Full method to obtain an equation of the line through $(5,6)$ with their " $m$ ". So $y-6=m(x-5)$ with their gradient or uses $y=m x+c$ with $(5,6)$ and their gradient to find $c$. Allow any numerical gradient here including -2 or -1 but not zero . (Allow (6,5) as a slip if $y-y_{1}=m\left(x-x_{1}\right)$ is quoted first ) <br> A1: Accept any multiple of the correct equation, provided that the coefficients are integers and equation $=0$ e.g. $-x+2 y-7=0$ or $k(x-2 y+7)=0$ or even $2 y-x-7=0$ <br> M1: Either one of the $x$ or $y$ coordinates using their equation <br> A1: Needs both correct values. Accept any correct equivalent.. Need not be written as co-ordinates. Even just -7 and 3.5 with no indication which is which may be awarded the A1. <br> M1: Any correct method for area of triangle $A O B$, with their values for co-ordinates of $A$ and $B$ (may include negatives) Method usually half base times height but determinants could be used. <br> A1: Any exact equivalent to 49/4, e.g. 12.25. (negative final answer is A0 but replacing by positive is A1) Do not need units. <br> c.s.o. implies if A0 is scored in (b) then A0 is scored in (c) as well. However if candidate has correct line equation in (a) of wrong form may score A0 in (a) and A1 in (b) and (c) |  |
|  | Note: Special cases: $\frac{1}{2}(-7)\left(+\frac{7}{2}\right)=-\frac{49}{4}$ (units) ${ }^{2}$ is M1 A0 but changing sign to area $=+\frac{49}{4}$ gets M1A1 (recovery) <br> N.B. Candidates making sign errors in (b) and obtaining +7 and $-\frac{7}{2}$. may also get $\frac{49}{4}$ as their answer following previous errors. They should be awarded A0 as this answer is not ft and is for correct solution only <br> Special Case: In (a) and (b): Produces parallel line instead of perpendicular line: So uses $m=-2$ This is not treated as a misread as it simplifies the question. The marks will usually be B0 M1 A0, M1 A0, M1 A0 i.e. maximum of 3/7 |  |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 6. (a) |  | $y=\frac{2}{x}$ is translated up or down. | M1 |
|  |  | $y=\frac{2}{x}-5$ is in the correct position. | A1 |
|  | $\longrightarrow$ - | Intersection with $x$-axis at $\left(\frac{2}{5},\{0\}\right)$ only Independent mark. | B1 |
|  |  | $y=4 x+2$ : attempt at straight line, with positive gradient with positive $y$ intercept. | B1 |
|  | Check graph in question for possible answers and space below graph for answers to part (b) | Intersection with $x$-axis at $\left(-\frac{1}{2},\{0\}\right)$ and $y$-axis at $(\{0\}, 2)$. | B1 [5] |
| (b) | Asymptotes : $x=0$ (or $y$-axis) and $y=-5$. (Lose second B mark for extra asymptotes) | An asymptote stated correctly. Independent of (a) These two lines only. Not ft their graph. | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ |
| (c) | (Lose second B mark for extra asymptotes) <br> Method 1: $\frac{2}{x}-5=4 x+2$ | Method 2: $\quad \frac{y-2}{4}=\frac{2}{y+5}$ | M1 |
|  | $\begin{aligned} & 4 x^{2}+7 x-2=0 \Rightarrow x= \\ & x=-2, \frac{1}{4} \end{aligned}$ <br> When $x=-2, y=-6$, When $x=\frac{1}{4}, y=3$ | $\begin{aligned} & y^{2}+3 y-18=0 \rightarrow y= \\ & y=-6,3 \end{aligned}$ | dM1 <br> A1 |
|  |  | When $y=-6, x=-2$ When $y=3, x=\frac{1}{4}$. | M1A1 <br> [5] |
|  |  |  | 12 marks |
|  | Notes |  |  |

(a) M1: Curve implies $y$ axis as asymptote and does not change shape significantly. Changed curve needs horizontal asymptote (roughly) Asymptote(s) need not be shown but shape of curve should be implying asymptote(s) parallel to $x$ axis. Curve should not remain where it was in the given figure. Both sections move in the same direction. There should be no reflection
A1: Crosses positive $x$ axis. Hyperbola has moved down. Both sections move by almost same amount. See sheet on page 19 for guidance.
B1: Check diagram and text of answer. Accept $2 / 5$ or 0.4 shown on $x$-axis or $x=2 / 5$, or $(2 / 5,0)$ stated clearly in text or on graph. This is independent of the graph. Accept $(0,2 / 5)$ if clearly on $x$ axis. Ignore any intersection points with $y$ axis. Do not credit work in table of values for this mark.
B1: Must be attempt at astraight line, with positive gradient \& with positive $y$ intercept (need not cross $x$ axis)
B1: Accept $x=-1 / 2$, or -0.5 shown on $x$-axis or $(-1 / 2,0)$ or $(-0.5,0)$ in text or on graph and similarly accept 2 on $y$ axis or $y=2$ or ( 0,2 ) in text or on graph. Need not cross curve and allow on separate axes.
(b) B1: For either correct asymptote equation. Second B1: For both correct (lose this if extras e.g. $x= \pm 1$ are given also). These asymptotes may follow correctly from equation after wrong graph in (a)
Just $y=-5$ is B1 B0 This may be awarded if given on the graph. However for other B mark it must be clear that $x=0$ (or the $y$-axis) is an asymptote. NB $x \neq 0, y \neq-5$ is B1B0
(c) M1: Either of these equations is enough for the method mark (May appear labelled as part (b))
dM1: Attempt to solve a 3 term quadratic by factorising, formula, completion of square or implied by correct answers.
(see note 1) This mark depends on previous mark.
A1: Need both correct $x$ answers (Accept equivalents e.g. 0.25) or both correct $y$ values (Method 2)
M1: At least one attempt to find second variable (usually $y$ ) using their first variable (usually $x$ ) related to line meeting curve. Should not be substituting $x$ or $y$ values from part (a) or (b). This mark is independent of previous marks.
Candidate may substitute in equation of line or equation of curve.
A1: Need both correct second variable answers Need not be written as co-ordinates (allow as in the scheme)
Note: Special case: Answer only with no working in part (c) can have 5 marks if completely correct, with both points found. If coordinates of just one of the points is correct - with no working - this earns M0 M0 A0 M1 A0 (i.e. 1/5)


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 8. | $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \quad-x^{3}+22^{\prime \prime} x^{-2}-2\left(\frac{5}{2}\right)$ "x ${ }^{-3}$ | M1 |
|  | $(y=) \quad-\frac{1}{4} x^{4}+\frac{" 2 " x^{-1}}{(-1)}-"\left(\frac{5}{2}\right) " \frac{x^{-2}}{(-2)}(+c) \quad \begin{array}{r\|r} \text { Raises power correctly on any one term. } \\ \text { Any two follow through terms correct. } \end{array}$ | M1 A1ft |
|  | $(y=) \quad-\frac{1}{4} x^{4}+\frac{2 x^{-1}}{(-1)}-\frac{5}{2} \frac{x^{-2}}{(-2)}(+c) \quad \text { This is not follow through }- \text { must be correct }$ | A1 |
|  | Given that $y=7$, at $x=1$, then $7=-\frac{1}{4}-2+\frac{5}{4}+c \Rightarrow c=$ | M1 |
|  | So, $(y=) \quad-\frac{1}{4} x^{4}-2 x^{-1}+\frac{5}{4} x^{-2}+c, \quad c=8 \quad$ or $(y=)-\frac{1}{4} x^{4}-2 x^{-1}+\frac{5}{4} x^{-2}+8$ | A1 |
|  |  | [6] |
|  |  | 6 marks |
|  | Notes |  |
|  | M1: Expresses as three term polynomial with powers 3, -2 and -3 . Allow slips in coefficients. This may be implied by later integration having all three powers $4,-1$ and -2 . <br> M1: An attempt to integrate at least one term so $x^{n} \rightarrow x^{n+1}$ (not a term in the numerator or denominator) <br> A1ft: Any two integrations are correct - coefficients may be unsimplified (follow through errors in coefficients only here) so should have two of the powers $4,-1$ and -2 after integration - depends on $2^{\text {nd }}$ method mark only. There should be a maximum of three terms here. <br> A1: Correct three terms - coefficients may be unsimplified- do not need constant for this mark Depends on both Method marks <br> M1: Need constant for this mark. Uses $y=7$ and $x=1$ in their changed expression in order to find $c$, and attempt to find $c$. This mark is available even after there is suggestion of differentiation. <br> A1: Need all four correct terms to be simplified and need $c=8$ here. |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 9. (a) | $\begin{array}{ll} \hline \text { Method 1: } & \text { Attempts } b^{2}-4 a c \text { for } a=(k+3), b=6 \text { and their } c . \quad c \neq k \\ b^{2}-4 a c=6^{2}-4(k+3)(k-5) \\ \left(b^{2}-4 a c=\right) \quad-4 k^{2}+8 k+96 \quad \text { or }-\left(b^{2}-4 a c=\right) \quad 4 k^{2}-8 k-96 \text { (with no prior algebraic } \\ \text { errors) } \\ \text { As } b^{2}-4 a c>0, \text { then }-4 k^{2}+8 k+96>0 \quad \text { and so, } k^{2}-2 k-24<0 \end{array}$ | M1 <br> A1 <br> B1 <br> (M1 on epen) A1 * |
|  | Method 2: $\quad$ Considers $b^{2}>4 a c$ for $a=(k+3), b=6$ and their $c . \quad c \neq k$ $6^{2}>4(k+3)(k-5)$ $4 k^{2}-8 k-96<0 \text { or }-4 k^{2}+8 k+96>0 \quad \text { or } 9>(k+3)(k-5)$ <br> (with no prior algebraic errors) and so, $k^{2}-2 k-24<0$ following correct work | M1 <br> A1 <br> B1 <br> (M1 on epen) <br> A1 * |
| (b) | Attempts to solve $k^{2}-2 k-24=0$ to give $k=$ ( $\Rightarrow$ Critical values, $k=6,-4$.) $k^{2}-2 k-24<0$ gives $-4<k<6$ | M1 <br> M1 A1 |
|  | Notes |  |
| (a) | Method 1: M1: Attempts $b^{2}-4 a c$ for $a=(k+3), b=6$ and their $c . c \neq k$ or uses quadratic formula and has this expression under square root. (ignore $>0,<0$ or $=0$ for first 3 marks) <br> A1: Correct expression for $b^{2}-4 a c-$ need not be simplified (may be under root sign) <br> B1: Uses algebra to manipulate result without error into one of these three term quadratics. Again may be under root sign in quadratic formula. (This mark is given as second $M$ on epen). If inequality is used early in "proof" may see <br> $4 k^{2}-8 k-96<0$ and B1 would be given for $4 k^{2}-8 k-96$ correctly stated. <br> A1: Applies $b^{2}-4 a c>0$ correctly ( or writes $b^{2}-4 a c>0$ ) to achieve the result given in the question. No errors should be seen. Any incorrect line of argument should be penalised here. There are several ways of reaching the answer; either multiplication of both sides of inequality by -1 , or taking every term to other side of inequality. If doubtful send to review. Need conclusion i.e. printed answer. <br> Method 2: M1: Allow $b^{2}>4 a c, b^{2}<4 a c$ or $b^{2}=4 a c$ for $a=(k+3), b=6$ and their $c . c \neq k$ <br> A1: Correct expressions on either side (ignore >, < or =). <br> B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sides by 4 again without error <br> A1: Produces result with no errors seen from initial consideration of $b^{2}>4 a c$. |  |
| (b) | M1: Uses factorisation, formula, completion of square method to find two values for $k$, or finds two correct answers with no obvious method <br> M1: Their Lower Limit $<k<$ Their Upper Limit . Allow the M mark mark for $\leq$. (Allow $k<$ upper and $k>$ lower) <br> A1: $-4<k<6$ Lose this mark for $\leq$ Allow ( $-4,6$ ) [not square brackets] or $k>-4$ and $k<6$ (must be and not or) Can also use intersection symbol $\cap$ NOT $k>-4, k<6$ (M1A0) |  |
|  | Special case : In part (a) uses $c=k$ instead of $k-5$ - scores 0 . Allow $k+5$ for method marks |  |
|  | Special Case: In part (b) Obtaining $-6<k<4$ This is a common wrong answer. Give M1 M1 A0 special case. |  |
|  | Special Case: In part (b) Use of $x$ instead of $k-$ M1M1A0 |  |
|  | Special Case: $-4<k<6$ and $k<-4, k>6$ both given is M0A0 for last two marks. Do not treat as isw. |  |



(c) $\quad$ Special case: Erroneous method Tangent at $Q$ is perpendicular to $2 x-3 y+18=0$

Uses - 3/2
So, " $2-\frac{4}{\sqrt{x}} "="-\frac{3}{2} " \quad$ Sets their gradient function $=$ their numerical gradient.

Substitutes their found $x$ into $y$.

## See next page for notes on graphs in qu 6:

Q6 Examples for Gudance.






MIAO (stops shoutd

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US034359 January 2013


For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

