Pearson Education accepts no responsibility whatsoever for the accuracy or method of working in the answers given.

Pearson Edexcel Level 3 GCE

Mathematics

Advanced Subsidiary Paper 1: Pure Mathematics

Sample assessment material for first teaching September 2017 Time: 2 hours

You must have:

Mathematical Formulae and Statistical Tables Calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 17 questions in this question paper. The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Answer ALL questions. Write your answers in the spaces provided.

1. The line *l* passes through the points A(3, 1) and B(4, -2). X, 9, 22 42 Find an equation for *l*. (3) $m = \frac{y_2 - y_1}{x_2 - x_1}$ = -2 - 1 4 - 3- 3 = -3x+c..... -3(3)+C-..... 9 -+ C C = 10 -3x + 10..... (Total for Question 1 is 3 marks)

2.	The curve C has equation	
	$y = 2x^2 - 12x + 16$	
	Find the gradient of the curve at the point $P(5, 6)$. (Solutions based entirely on graphical or numerical methods are not acceptable.)	
		(4)
	$\frac{dy}{dx} = 4x - 12$	
	when $x = 5$ $dy = 4(5) - 12 = 8$	
•••••		
••••		
••••		
	(Total for Question	2 is 4 marks)

3. Given that the point A has position vector $3i - 7j$ and the point B has position	ion vector 8i + 3j,
(a) find the vector \overrightarrow{AB} .	
	(2)
(b) Find $ \overline{AB} $. Give your answer as a simplified surd.	
	(2)
$\frac{-7}{1 \Lambda \rho}$	
a/AB = b - a	
= 8i + 3j - (#3i - 7j)	
= -11-i-10-j	
= 5i + 10j	
$b/ \bar{AB} = \sqrt{5^2 + 10^2}$	
$=\sqrt{25+100}$	
= 125	
= 125 5	
= 515	
(Total 1	for Question 3 is 4 marks)

8

4.

$$f(x) = 4x^3 - 12x^2 + 2x - 6$$

(a) Use the factor theorem to show that (x - 3) is a factor of f(x).

(b) Hence show that 3 is the only real root of the equation f(x) = 0

$$a/ f(3) = 4(3)^{3} - 12(3)^{2} + 2(3) - 6$$

$$= 0$$

$$f(3) = 0 \quad \therefore \quad (x-3) \text{ is } a \text{ factor of } f(x)$$

$$b/ \qquad 4x^{2} + 2$$

$$x - 3 \left[4x^{3} - 12x^{2} + 2x - 6 \right]$$

$$4x^{3} - 12x^{2}$$

$$0 + 2x - 6$$

$$2x - 6$$

$$0 -$$

$$(x - 3) \left(4x^{2} + 2 \right) = 0$$

$$x = 3$$

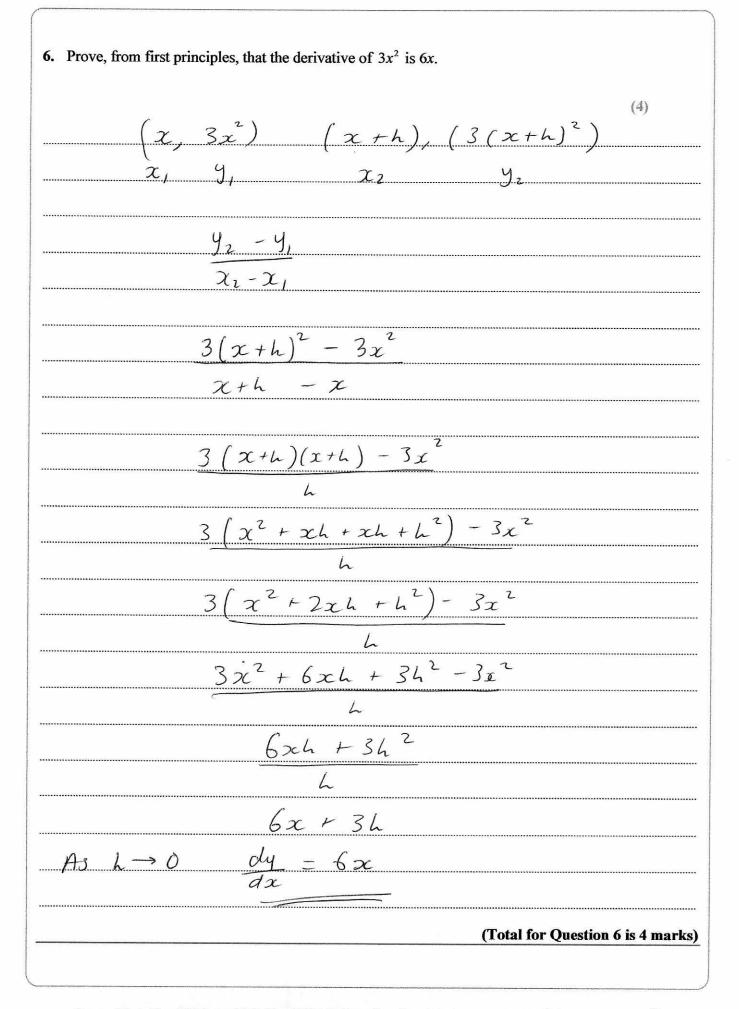
$$y^{2} + 2 = 0$$

$$4x^{2} + 2 = 0$$

$$y^{2} = -2$$

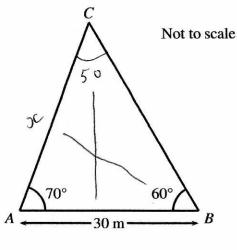
$$x^{2} = -\frac{1}{2} \left(a \text{ regalive (annot be)} \right)$$

$$x = 10^{2} - 10^$$


Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics – Sample assessment materials (SAMs) – Version 1.0 – Accredited pre-publication – March 2017 © Pearson Education Limited 2017

9

(2)


(4)

5.	Given that	
	$f(x) = 2x + 3 + \frac{12}{x^2}, x > 0$	
	show that $\int_{0}^{2\sqrt{2}} f(x) dx = 16 + 3\sqrt{2}$	
	1	(5)
	252	
	$\int_{1}^{2x+3} + 12x^{-2} dz$	
	JI 	
	$\int \frac{1}{2c^2 + 3x - 12x} = \int \frac{1}{1}$	
	$\left[(2\sqrt{2})^2 + 3(2\sqrt{2}) - 1^2(2\sqrt{2})^{-1} \right] - \left[(1)^2 + 3(1) - (1)^2 + 3(1) - (1)^2 + 3(1) - (1)^2 + 3(1) - (1)^2 + 3(1)^2 + $	12(1)
	$(8 + 3\sqrt{2}) - (-8)$	
	$16 + 3\sqrt{2}$	
	(Total for Question	5 is 5 marks)

11

7. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $\left(2-\frac{x}{2}\right)'$, giving each term in its simplest form. 7 21 (4)(b) Explain how you would use your expansion to give an estimate for the value of 1.995^{7} (1) $1(2)^{7} + 7(2)^{6}(-\frac{x}{2}) + 21(2)^{5}(-\frac{x}{2})^{2}$ a/ 2 128 - 224x + 168x $\frac{b}{2} - \frac{3c}{2} = 1.995$ $1.995 + \frac{x}{2}$ Ξ $\frac{x}{2}$ 0.005 = = 0.01 _____ e^{x=}0.01 into the expansion

A triangular lawn is modelled by the triangle ABC, shown in Figure 1. The length AB is to be 30 m long.

Given that angle $BAC = 70^{\circ}$ and angle $ABC = 60^{\circ}$,

8.

(a) calculate the area of the lawn to 3 significant figures.

(4)

(b) Why is your answer unlikely to be accurate to the nearest square metre?

(1)

z = 30Sin 60 Sin 50 30 x sin 60 Sin 50 _____ (3sf) 33. M a 5 Sin Ċ -Area 30 7 Sin 70 35f b) Because it is a model and it is likely that the

14

Question 8 cont	inued									
angles	have	Leen	rounde	d to	/	07	2	sF.		
						//=-			4	
	n Pinnerita a gin genera nevelne					(1)	ual f	or Que	SUON 8	is 5 marks)

9. Solve, for $360^\circ \leq x < 540^\circ$,

 $12\sin^2 x + 7\cos x - 13 = 0$

Give your answers to one decimal place.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(5) $\sin^2 x + \cos^2 x = 1$ _____ $\sin^2 x = 1 - \cos^2 x$ +7 cos x - 13 = 0 - cos 12 x) 12 cos2x + 7 cosx -13 = 02 2 X 4 2 cos x - 1 = 0Cos ²x -12 + = 0 CODX Cos 4 cosx -3 $(0 = (1 - x)^{-1}) = 0$ 1 4 Cos x = 75.5, 284.5, 435.5, x = 70.5, 289.5, 430.5x = 435.5, 430.5

10. The equation $kx^2 + 4kx + 3 = 0$, where k is a constant, has no real roots.

Prove that

$$0 \leq k < \frac{3}{4}$$
(4)
$$\frac{b^2 - 4ac < 0}{(4\kappa)^2 - 4(\kappa)(3) < 0}$$

$$\frac{b^2 - 12k < 0}{16k^2 - 12k < 0}$$

$$\frac{4k(4k - 3) < 0}{4k(4k - 3) < 0}$$

$$\frac{k = 0 \quad k = \frac{3}{4}}{\sqrt{2}}$$

$$\frac{0 \leq k < \frac{3}{4}}{\sqrt{2}}$$

$$\frac{14 \quad k = 0}{3 = 0 \quad k \neq 0}$$

$$0 \leq k < \frac{3}{4}$$
(Total for Question 10 is 4 marks)

11. (a) Prove that for all positive values of x and y
$\sqrt{xy} \le \frac{x+y}{2}$
2 (2)
(b) Prove by counter example that this is not true when x and y are both negative.
(1)
/
$\frac{\chi y \leq (\chi + / y)^2}{4}$
$4xy \leq \chi^2 + xy + xy + y^2$
$\frac{4xy}{\sqrt{x^2 + 2xy + y^2}}$
$0 \neq x^2 - 2xy + y^2$
$q \leq (x - y)^2$
Cany number square
$2\sqrt{x}\sqrt{y} \leq x + y$
$0 \leq x - 2\sqrt{x}\sqrt{y} + y$
$o \in (\sqrt{x} - \sqrt{y})(\sqrt{x} - \sqrt{y})$
$o \in (\sqrt{12} - \sqrt{12})^2$
Any number squared is >0
$\frac{b}{\sqrt{(-1)(-4)}} \leq \frac{(-1) + (-4)}{2}$
$\sqrt{4} \leq \frac{-5}{2}$
2 < -2.5
(Total for Question 11 is 3 marks)

12. A student was asked to give the exact solution to the equation

$$2^{2x+4} - 9(2^x) = 0$$

The student's attempt is shown below:

$$2^{2x+4} - 9(2^{x}) = 0$$
(1) $2^{2x} + 2^{4} - 9(2^{x}) = 0$
Let $2^{x} = y$
 $y^{2} - 9y + 8 = 0$
(2)
 $(y-8)(y-1) = 0$
 $y = 8$ or $y = 1$
So $x = 3$ or $x = 0$

(a) Identify the two errors made by the student.

(b) Find the exact solution to the equation.

2×+4 $2^{x} \times 2^{4}$ 5 1 a 4 2 2 16 2x X 9 -16 0 2 X x 2 C -Ô 16 2 2 0 9 -16 = 09 C =0 -16 16 r Log

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics – Sample assessment materials (SAMs) – Version 1.0 – Accredited pre-publication – March 2017 © Pearson Education Limited 2017

20

(2)

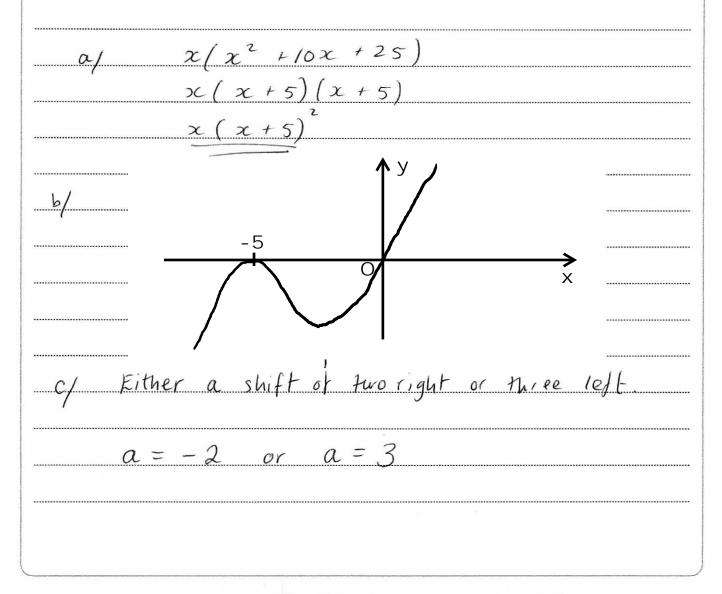
(2)

13. (a) Factorise completely $x^3 + 10x^2 + 25x$

(b) Sketch the curve with equation

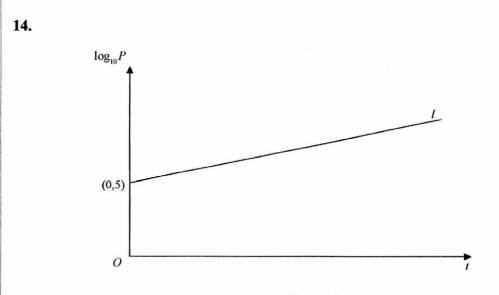
$$y = x^3 + 10x^2 + 25x$$

showing the coordinates of the points at which the curve cuts or touches the x-axis.


The point with coordinates (-3, 0) lies on the curve with equation

$$y = (x+a)^3 + 10(x+a)^2 + 25(x+a)$$

where a is a constant.


(c) Find the two possible values of a.

(3)

(2)

(2)

A town's population, P, is modelled by the equation $P = ab^t$, where a and b are constants and t is the number of years since the population was first recorded.

The line *l* shown in Figure 2 illustrates the linear relationship between *t* and $\log_{10} P$ for the population over a period of 100 years.

The line *l* meets the vertical axis at (0, 5) as shown. The gradient of *l* is $\frac{1}{200}$.

(a) Write down an equation for l.

(b) Find the value of a and the value of b.

(c) With reference to the model interpret

- (i) the value of the constant a,
- (ii) the value of the constant b
- (d) Find

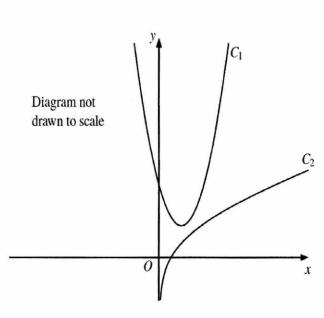
(i) the population predicted by the model when t = 100, giving your answer to the nearest hundred thousand,

(ii) the number of years it takes the population to reach 200 000, according to the model.

(e) State two reasons why this may not be a realistic population model.

(2)

(3)


(2)

(4)

(2)

Question 14 continued 5 X + α 200 5 t 20 5 log -=0 wh 5 --100000 ab Ö ab 00000 -100 000 Ξ a 5.5 log £ = 100 2 wh 316227.766 100 = 100000 5 316227.766 100 3.16227766 = 6 3.16227766 -15794 5 1.01 5 6 -(3sf)1.01 The initial population Cil 1.16% The incr in incr ii/ population each eer (Total for Question 14 is 13 marks)

14 Question 13 continued 316000 α 200000 1.011579454 -100000 5 79454 2 i 011 -Log": ...," 2 t = = 0.2 years 6 years The population is unlikely to keep e increasing at the same rate There to build new houses. mited space Mai b-e There may be bi changes due popul ation ry / immigration/disease. to change in indust (Total for Question 13 is 7 marks)

The curve C_1 , shown in Figure 3, has equation $y = 4x^2 - 6x + 4$.

The point $P\left(\frac{1}{2}, 2\right)$ lies on C_1

15.

The curve C_2 , also shown in Figure 3, has equation $y = \frac{1}{2}x + \ln(2x)$.

The normal to C_1 at the point P meets C_2 at the point Q.

Find the exact coordinates of Q.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(8)

$$\begin{array}{cccc} C_{1} & i & dy &= 8x - 6 \\ \hline dz & \\ \hline whu & x = \frac{i}{2} & \frac{dy}{dz} &= 8[\frac{i}{2}] - 6 \\ & & = -2 \\ \hline & & perpendicular \ grad.ent \ = \frac{i}{2} \\ & & y = \frac{i}{2}x + c & (\frac{i}{2}, 2) \\ & & 2 = \frac{i}{2}(\frac{i}{2}) + c \end{array}$$

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics – Sample assessment materials (SAMs) – Version 1.0 – Accredited pre-publication – March 2017 © Pearson Education Limited 2017

26

Question 15 continued
$2 = \frac{1}{4} + c$
$c = \frac{7}{4}$
$y = \frac{1}{2}x + \frac{7}{4}$ $y = \frac{1}{2}x + \ln(2x)$
$\frac{1}{2}\chi + \frac{7}{4} = \frac{1}{2}\chi + \ln(2\chi)$
$\frac{7}{4} = \ln 2x$
$e^{\frac{7}{4}} = 2x$
$\frac{1}{2}$
$y = \frac{1}{2} \cdot \frac{e^{7}}{2} + \frac{7}{4}$
$y = \frac{e^4}{4} + \frac{7}{4}$
$= e^{\frac{7}{4}} + 7$
$\left(\frac{e^{\frac{7}{4}}}{2}, \frac{e^{\frac{7}{4}}+7}{4}\right)$
(Total for Question 15 is 8 marks)

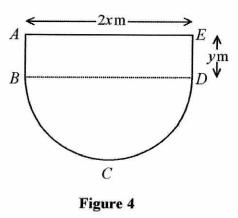


Figure 4 shows the plan view of the design for a swimming pool.

16.

.....

.....

The shape of this pool ABCDEA consists of a rectangular section ABDE joined to a semicircular section BCD as shown in Figure 4.

Given that AE = 2x metres, ED = y metres and the area of the pool is 250 m²,

(a) show that the perimeter, P metres, of the pool is given by

$$P = 2x + \frac{250}{x} + \frac{\pi x}{2}$$
(4)
(b) Explain why $0 < x < \sqrt{\frac{500}{\pi}}$
(2)
(c) Find the minimum perimeter of the pool, giving your answer to 3 significant figures.
(4)
(4)
(5) Control (1) Cont

 $2x + 2y + \pi x$ perimeter =

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics - Sample assessment materials (SAMs) -Version 1.0 - Accredited pre-publication - March 2017 © Pearson Education Limited 2017

28

.....

Question 16 continued 2xy (x)+ π Area Ξ 2 2 50 TTX 2 2 2 5 $\pi \chi$ TI 50 2 2x42 250 TIX 2x TTX erimeter -4 250 \mathcal{T} X TTJC X 2 2x50 TTX -1-2 2 er than big 0 240 has otherwi 10 ... the exist POO wou t 500 χ an omerc 2 250m ea be Zero me a NOL 500 250 77 2 > 0X and Must both be 4 (Total for Question 16 is 10 marks)

6 Question 12 continued $2x + 250x^{-1} +$ T x T dF 25000 5 2 X dP = 0 when Min 0 2 50 2 J 11 2 250 2 3 \mathcal{I} 2 250 = 71 2+ 1/2 250 20 + 11/2 2 351 8.37 m $\chi =$ 250 + + TT-8.37 2 3 8 7 35 59.8 m -16 10 (Total for Question 12 is #marks)

17. A circle C with centre at (-2, 6) passes through the point (10, 11).(a) Show that the circle C also passes through the point (10, 1).

The tangent to the circle C at the point (10, 11) meets the y axis at the point P and the tangent to the circle C at the point (10, 1) meets the y axis at the point Q. (b) Show that the distance PQ is 58 explaining your method clearly.

(7)

(3)

2 2 2 2 +21 11 - 6)=1 D 25 + =1 144 2 169 = 1 13 -6 2 169 = 6 2 Ξ 6 1 169 +2 10 169 169 -(10,1 through passes M C 12 -X2 - X1 11-6 = perp. M=-12 -12 x + c+ C 1.0.)

estion 17 continued	
	,
	(Total for Question 17 is 10 mar
	TOTAL FOR PAPER IS 100 MAR